The properties of primary rabbit kidney proximal tubule cells in glucose-free serum-free medium have been examined. Primary rabbit kidney proximal tubule cells were observed to grow at the same rate, 1.0 doublings/day, both in glucose-free and in glucose-supplemented medium. Growth in glucose-free medium was dependent upon the presence of an additional nutritional supplement, such as glutamine, pyruvate, palmitate, lactate, or beta hydroxybutyrate. Lactate, pyruvate, and glutamate are utilized for renal gluconeogenesis in vivo. The growth of the primary rabbit kidney proximal tubule cells in glucose-free medium was also dependent upon the presence of the three growth supplements insulin, transferrin, and hydrocortisone. Insulin was growth stimulatory to the primary proximal tubule cells in glucose-free medium, although insulin causes a reduction in the phosphoenolpyruvate carboxykinase (PEPCK) activity in these cells. PEPCK is a key regulatory enzyme in the gluconeogenic pathway. In order to evaluate whether or not the primary cells have gluconeogenic capacity, their glucose content was determined. The cells contained 5 pmoles D-glucose/mg protein. However, no significant glucose was detected in the medium. Presumably, the primary cells were either utilizing or storing the glucose made by the gluconeogenic pathway. Consistent with this latter possibility, cellular glycogen levels were observed to increase with time in culture. The effect of glucose on the expression of the alpha I(IV) collagen and laminin B1 chain genes was examined. Northern analysis indicated that the level of alpha I(IV) collagen mRNA was significantly elevated in glucose containing, as compared with glucose deficient, medium. In contrast, laminin B1 chain mRNA levels were not significantly affected by the glucose content of the medium.
Fatty acid amide hydrolase (FAAH) is a membrane-associated enzyme that catalyzes the hydrolysis of several endogenous bioactive lipids, including anandamide (AEA), N-palmitoylethanolamine (PEA), oleamide, and N-oleoylethanolamine (OEA). These fatty acid amides participate in many physiological activities such as analgesia, anxiety, sleep modulation, anti inflammatory responses, and appetite suppression. Because FAAH plays an essential role in controlling the tone and activity of these endogenous bioactive lipids, this enzyme has been implicated to be a drug target for the therapeutic management of pain, anxiety, and other disorders. In an effort to discover FAAH inhibitors, the authors have previously reported the development of a novel fluorescent assay using purified FAAH microsomes as an enzyme source and a fluorogenic substrate, arachidonyl 7-amino, 4-methyl coumarin amide (AAMCA). Herein, the authors have adapted this assay to a high-throughput format and have screened a large library of small organic compounds, identifying a number of novel FAAH inhibitors. These data further verify that this fluorescent assay is sufficiently robust, efficient, and low-cost for the identification of FAAH inhibitory molecules and open this class of enzymes for therapeutic exploration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.