The impact of streptozotocin (STZ)-induced, insulinopenic diabetes on the GH axis of rats and mice differs from study to study, where this variation may be related to the induction scheme, severity of the diabetes and/or the genetic background of the animal model used. In order to begin differentiate between these possibilities, we compared the effects of two different STZ induction schemes on the GH axis of male Sprague-Dawley rats: (1) a single high-dose injection of STZ (HI STZ, 80 mg/kg, i.p.), which results in rapid chemical destruction of the pancreatic -cells, and (2) multiple low-dose injections of STZ (LO STZ, 20 mg/kg for 5 consecutive days, i.p.), which results in a gradual, autoimmune destruction of -cells. STZ-treated animals were killed after 3 weeks of hyperglycemia (>400 mg/dl), and in both paradigms circulating insulin levels were reduced to <40% of vehicle-treated controls. HI STZ-treated rats lost weight, while body weights of LO STZ-treated animals gradually increased over time, similar to vehicle-treated controls. As previously reported, HI STZ resulted in a decrease in circulating GH and IGF-I levels which was associated with a rise in hypothalamic neuropeptide Y (NPY) mRNA (355% of vehicle-treated controls) and a fall in GH-releasing hormone (GHRH) mRNA (45% of vehicle-treated controls) levels. Changes in hypothalamic neuropeptide expression were reflected by an increase in immunoreactive NPY within the arcuate and paraventricular nuclei and a decrease in GHRH immunoreactivity in the arcuate nucleus, as assessed by immunohistochemistry. Consistent with the decline in circulating GH and hypothalamic GHRH, pituitary GH mRNA levels of HI STZ-treated rats were 58% of controls. However, pituitary receptor mRNA levels for GHRH and ghrelin increased and those for somatostatin (sst2, sst3 and sst5) decreased following HI STZ treatment. The impact of LO STZ treatment on the GH axis differed from that observed following HI STZ treatment, despite comparable changes in circulating glucose and insulin. Specifically, LO STZ treatment did suppress circulating IGF-I levels to the same extent as HI STZ treatment; however, the impact on hypothalamic NPY mRNA levels was less dramatic (158% of vehicle-treated controls) where NPY immunoreactivity was increased only within the paraventricular nucleus. Also, there were no changes in circulating GH, hypothalamic GHRH or pituitary receptor expression following LO STZ treatment, with the exception that pituitary sst3 mRNA levels were suppressed compared with vehicle-treated controls. Taken together these results clearly demonstrate that insulinopenia, hyperglycemia and reduced circulating IGF-I levels are not the primary mediators of hypothalamic and pituitary changes in the GH axis of rats following HI STZ treatment. Changes in the GH axis of HI STZ-treated rats were accompanied by weight loss, and these changes are strikingly similar to those observed in the fasted rat, which suggests that factors associated with the catabolic state are critical in modify...
IntroductionThe accumulation of amyloid-beta (Aβ) is one of the neuropathologic hallmarks of Alzheimer’s disease (AD) and abnormal gamma band oscillations and brain connectivity have been observed. Recently, a therapeutic potential of gamma entrainment of the brain was reported by Iaccarino et al. However, the affected areas were limited to hippocampus and visual cortex. Therefore, we sought to test the effects of acoustic stimulation in a mouse model of AD.MethodsFreely moving 6-month-old 5XFAD mice with electroencephalogram (EEG) electrodes were treated with daily two-hour acoustic stimulation at 40Hz for 2 weeks. Aβ and microglia were evaluated by immunohistochemistry and ELISA. Evoked and spontaneous gamma power were analyzed by wavelet analysis. Coherence, phase locking value (PLV), and cross-frequency coupling were analyzed.ResultsThe number of Aβ plaques decreased in the pre-and infralimbic (PIL) and hippocampus regions and soluble Aβ-40 and Aβ-42 peptides in PIL in the acoustic stimulation group. We also found that the number of microglia increased in PIL and hippocampus. In EEG analysis, evoked gamma power was decreased and spontaneous gamma power was increased. Gamma coherence and phase locking value did not show significant changes. Cross-frequency coupling was shifted from gamma-delta to gamma-theta rhythm.ConclusionIn summary, we found that acoustic stimulation at 40Hz can reduce Aβ in the brain and restore the gamma band oscillations and the frontoparietal connectivity. Our data suggest that acoustic stimulation might alter the natural deterioration processes of AD and have a therapeutic potential in AD.
The properties of primary rabbit kidney proximal tubule cells in glucose-free serum-free medium have been examined. Primary rabbit kidney proximal tubule cells were observed to grow at the same rate, 1.0 doublings/day, both in glucose-free and in glucose-supplemented medium. Growth in glucose-free medium was dependent upon the presence of an additional nutritional supplement, such as glutamine, pyruvate, palmitate, lactate, or beta hydroxybutyrate. Lactate, pyruvate, and glutamate are utilized for renal gluconeogenesis in vivo. The growth of the primary rabbit kidney proximal tubule cells in glucose-free medium was also dependent upon the presence of the three growth supplements insulin, transferrin, and hydrocortisone. Insulin was growth stimulatory to the primary proximal tubule cells in glucose-free medium, although insulin causes a reduction in the phosphoenolpyruvate carboxykinase (PEPCK) activity in these cells. PEPCK is a key regulatory enzyme in the gluconeogenic pathway. In order to evaluate whether or not the primary cells have gluconeogenic capacity, their glucose content was determined. The cells contained 5 pmoles D-glucose/mg protein. However, no significant glucose was detected in the medium. Presumably, the primary cells were either utilizing or storing the glucose made by the gluconeogenic pathway. Consistent with this latter possibility, cellular glycogen levels were observed to increase with time in culture. The effect of glucose on the expression of the alpha I(IV) collagen and laminin B1 chain genes was examined. Northern analysis indicated that the level of alpha I(IV) collagen mRNA was significantly elevated in glucose containing, as compared with glucose deficient, medium. In contrast, laminin B1 chain mRNA levels were not significantly affected by the glucose content of the medium.
This paper presents a case study on the rehabilitation of a fire-damaged structure and describes the results of a site investigation and tests, leading to a plan for the rehabilitation of the structure. The fire took place in the main control room of a thermal power plant and lasted about three hours until it was finally extinguished. To set up a rehabilitation plan for the damaged structure, a visual inspection of the damaged condition was first carried out, which was followed by analysis and on-site material tests indicating the degree of neutralization progress in the remaining structure. Specimens of damaged concrete and reinforcing bars were sampled and tested for their residual strengths. As a conclusion, two methods of rehabilitation were suggested considering the current condition of the structure and the sequence of construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.