Developing high resolution, well-dated marine proxies of environmental, climatic, and oceanographic conditions is critical in order to advance our understanding of the ocean's role in the global climate system. While some work has investigated bulk and compound specific stable nitrogen isotopes (δ15N) in bivalve shells as proxies for environmental variability, the small concentrations of nitrogen found in the organic matrix of the shell calcium carbonate (CaCO3) makes developing high resolution records challenging. This study investigates the potential of using the bulk and amino acid δ15N of bivalve periostracum, the protein layer on the outside of the shell, as a proxy archive of nitrogen cycling processes and water source variability. Bulk δ15N values were measured on the periostracum, aragonitic CaCO3, and adductor muscle of Arctica islandicashells collected in the Gulf of Maine. Increased variability of isotopic values across growth lines compared to along growth lines support mechanistic reasoning based on growth processes that periostracum is recording changes in δ15N over the course of the clam's lifetime (up to 500 years). In addition, the statistically significant relationship between periostracum δ15N and contemporaneous carbonate δ15N of the same shell (r= 0.82, p Compound specific δ15N analyses of the periostracum of A. islandica shells were used to determine that the calculated trophic position of the clams in this study (1.4±0.4) did not change significantly between 1783 and 1997. Phenylalanine δ15N values over the last 70 years show similar trends to that of the bulk record, suggesting that changes in bulk δ15N of that time period are related to changes in baseline δ15N. Periostracum δ15N values from shells collected in the western Gulf of Maine have decreased by ∼1‰ since the mid-1920s. This trend (-0.008‰/year) is not statistically different from the trend of previously published δ15N values of deep-sea corals from the entrance to the Gulf of Maine over the same time period. This coral record has been shown to indicate a shift in water mass source to the region and therefore the similarity between the two records suggest that changes in periostracum δ15N values are reflecting broader North Atlantic hydrographic changes. Our study introduces a new, high-resolution and absolutely dated paleoceanographic proxy of baseline δ15N, presenting the opportunity for future reconstructions of aspects of nitrogen cycling and water source changes in the global oceans.
Deep oceanic overturning circulation in the Atlantic (Atlantic Meridional Overturning Circulation, AMOC) is projected to decrease in the future in response to anthropogenic warming. Caesar et al. 1 argue that an AMOC slowdown started in the 19 th century and intensified during the mid-20th century. Although the argument and selected evidence proposed have some merits, we find that their conclusions might be different if a more complete array of data available in the North Atlantic region had been considered. We argue that the strength of AMOC over recent centuries is still poorly constrained and the expected slowdown may not have started yet.Recently, Moffa-Sanchez et al. 2 compiled a comprehensive set of paleoclimate proxy data from the North Atlantic and Arctic regions using objective criteria for identifying high-quality datasets of ocean conditions spanning the last two millennia (Figure 1). Although no direct (singular) proxy for AMOC exists, the paleoceanographic proxy data compiled by Moffa-Sanchez et al. 2 highlight the spatial and temporal complexities of ocean state in modern times and the recent past. When all the available proxy records potentially related to AMOC variability and 20th century observational datasets are considered, the time history of the AMOC system becomes less certain. In contrast, selecting only a subset of proxy records that share similar trends, as performed by Caesar et al. 1 , provides an incomplete perspective on AMOC changes through time.Increased data availability in recent decades has enabled a shift in the fields of paleoceanography and paleoclimatology toward more objective and transparent data selection in studies aimed at quantitatively reconstructing past variability. Such screening methods tend to minimize the impact of spurious or less reliable records on analyses and work to enhance the common signal in proxy records. Additionally, analyzing networks of suitable and carefully selected data enables robust uncertainty estimates on the resulting reconstructions, which is essential in providing confidence in the results and the ability to compare information across disciplines. Key to such work is identifying robust criteria and weighting schemes that objectively identify and utilize the most reliable data. Caesar et al. 1 use a variety of proxy records in their analysis, but do not identify the reasoning or criteria for selecting those records over many others that are likely related to aspects of AMOC dynamics (see the recent review 2 ).Objective and inclusive data selection standards are especially important when addressing AMOC, which is a system composed of many different components that can behave differently at different latitudes, depths, and timescales 3 and looking at any singular index of AMOC inherently oversimplifies the system. The complex signals in the available AMOC-related proxy variables over recent centuries support this notion 2 , though many of these studies were not considered by Caesar et al. 1In addition to the need for objective standards, we...
The Gulf of Maine is undergoing rapid environmental and ecological changes, yet our spatial and temporal understanding of the climatic and hydrographic variability in this region, including extreme events, is limited and biased to recent decades. In this study, we utilize a highly replicated, multi-century master shell growth chronology derived from the annual increments formed in the shells of the long-lived bivalve Arctica islandica collected in 38 m from the central coastal region in the Gulf of Maine. Our results indicate that shell growth is highly synchronous and inversely related to local seawater temperatures. Using composite analyses of extreme shell growth events from CE 1900 to 2013, we extend our understanding of the factors driving oceanic variability and shell growth in the Northwestern Atlantic back to CE 1761. We suggest that extreme shell growth events are primarily controlled by Gulf of Maine sea surface temperature (SST) and stratification conditions, which in turn appear to be largely influenced by SST patterns in the Pacific Ocean through their influence on mid-latitude atmospheric circulation patterns and the location of the eddy-driven jet. The large-scale jet dynamics during these extreme years manifest as precipitation and moisture transport anomalies and regional SST conditions in the Gulf of Maine that either enhance or inhibit shell growth. Pacific climate variability is thus an important, yet understudied, influence on Gulf of Maine ocean conditions.
In order to document relative changes in water mass contributions in the Gulf of Maine (GoM), we used the shell material of the long‐lived ocean quahog (Arctica islandica). A multicentury, crossdated master shell growth chronology facilitated the reconstruction of a radiocarbon Δ14C history prior to the radiocarbon bomb‐pulse of the 1950s. This reconstruction reveals a highly variable Δ14C series (mean = −56.6 ± 8.0‰ (1σ); N = 34) from CE 1685 to 1935. Δ14C values indicate a rapid shift ca. 1860 CE in source waters to the GoM. From CE 1685 to 1860, GoM waters were dominated by an admixture of Warm Slope Water primarily composed of tropical Atlantic surface waters/Gulf Stream Waters, and Scotian Shelf Water. This water regime was followed by a rapid Δ14C transition to a Labrador Slope Water endmember after CE 1860, with an apparent decrease in Scotian Shelf Water. Together, this shift is likely related to broader changes in the Arctic and the Labrador Sea, and a short‐term strengthening of the Atlantic meridional overturning circulation. Labrador Slope Water dominating GoM hydrography in the 1900s is verified by the similarities between this record and other coral‐ and shell‐derived Δ14C records influenced by waters with Labrador Sea origin. This suggests that GoM radiocarbon variability broadly reflects large‐scale ocean circulation processes in the Northwestern Atlantic. The lack of Δ14C values much below the Labrador Slope Water endmember suggests that the interior GoM gets very little to no Antarctic Intermediate Water as other studies had previously suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.