Oliguria/anuria, multiorgan failure and immaturity were significant risk factors for mortality in preterm infants with renal failure. Further studies and/or more registry data are needed to determine whether these infants died with or from renal failure, and whether dialysis would improve outcome in this special population.
The NMDA receptor (NMDA-R) is a key element in neural transmission and mediating a vast variety of physiological and pathological processes in the nervous system. It is well-known that phosphorylation is required for functioning of the NMDA-R, and we therefore decided to study this post-translational modification in subunits NR1 and NR2A-D. Immunoprecipitation with an antibody against NR1 was carried out from rat hippocampi and SDS-PAGEs were run. Bands were punched, destained, and digested with trypsin and chymotrypsin and peptides were identified by nano-LC-ESI-MS/MS using an ion trap (HCT). Proteins were identified using specific software. Phosphorylations were verified by phosphatase treatment and reanalysis by mass spectrometry. The NMDA-R subunits NR1 and 2A-D were identified. On NR2A, a novel phosphorylation site was observed at S511, and on NR2B, four novel phosphorylation sites were revealed at S886, S917, S1303, and S1323 by mass spectrometry and verified by phosphatase treatment with mass spectrometrical reanalysis. A series of NMDA-R phosphorylations have been reported and these serve different functions as receptor activation, localization, and protein-protein interactions. Herein, findings of novel phosphorylation sites are extending knowledge on chemical characterization of the NMDA-R and warrant studying function of site-specific receptor phosphorylation in health and disease.
Modafinil has been shown to modify behavioural and cognitive functions and to effect several brain receptors. Effects, however, were not observed at the receptor protein complex level and it was therefore the aim of the study to train mice in the multiple T-Maze (MTM) as a paradigm for spatial memory and to determine paralleling brain receptor complex levels. Sixty C57BL/6J mice were used in the study and divided into four groups (trained drug injected; trained vehicle injected; yoked drug injected; yoked vehicle injected). Animals obtained training for 4 days and were killed 6 h following the last training session on day 4. Hippocampi were dissected from the brain, membrane fractions were prepared by ultracentrifugation and were run on blue-native gels and immunoblotted with antibodies against major brain receptors. Modafinil treatment led to decreased latency and increased average speed, but not to changes in pathlength and number of correct decisions in the MTM. Drug effects were modifying receptor complexes of GluR1, GluR2, D2 and NR1. Training effects on receptor complex levels were observed for GluR3, D1 and nicotinic acetylcholine receptor alpha 7 (Nic7). GluR1 levels were correlating with GluR2 and D1 levels were correlating with D2 and NR1. Involvement of the glutamatergic, NMDA, dopaminergic and nicotinergic system in modafinil and memory training were herein described for the first time. A brain receptor complex pattern was revealed showing the concerted action following modafinil treatment.
A series of individual proteins have been linked to performance in the Morris water maze (MWM) but no global effects have been reported. It was therefore the aim of the study to show which proteins were strain-independent, global factors for training in the MWM. Strains C57BL/6J, apodemus sylvaticus and PWD/PhJ were used. MWM and gels from trained animals were from a previous own study and corresponding yoked groups were generated. Hippocampal proteins were extracted and run on two-dimensional gel electrophoresis. Spots with different expressional levels between trained and yoked groups were punched and identified by mass spectrometry (nano-LC-ESI-MS/MS, ion trap). Two-way ANOVA with two factors (strain and training) was carried out and a Bonferroni test was used to compare groups. 12 proteins from several pathways and cascades showed different levels in trained mice versus corresponding yoked animals in all strains tested. Four out of these proteins were verified by immunoblotting: beta-synuclein, profilin 2, nucleoside diphosphate kinase A (NME1) and isocitrate dehydrogenase 3. Four proteins verified by immunoblotting could be shown to be involved in training in the MWM as a global effect, independent of the strain tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.