Phosphorus (P) is an indispensable element for all life on Earth and, during the past decade, concerns about the future of its global supply have stimulated much research on soil P and method development. This review provides an overview of advanced state-of-the-art methods currently used in soil P research. These involve bulk and spatially resolved spectroscopic and spectrometric P speciation methods (1 and 2D NMR, IR, Raman, Q-TOF MS/MS, high resolution-MS, NanoSIMS, XRF, XPS, (µ)XAS) as well as methods for assessing soil P reactions (sorption isotherms, quantum-chemical modeling, microbial biomass P, enzymes activity, DGT, 33P isotopic exchange, 18O isotope ratios). Required experimental set-ups and the potentials and limitations of individual methods present a guide for the selection of most suitable methods or combinations.
Due to the limited solubility of phosphorus (P) in soil, understanding its binding in fine colloids is vital to better forecast P dynamics and losses in agricultural systems. We hypothesized that water-dispersible P is present as nanoparticles and that iron (Fe) plays a crucial role for P binding to these nanoparticles. To test this, we isolated water-dispersible fine colloids (WDFC) from an arable topsoil (Haplic Luvisol, Germany) and assessed colloidal P forms after asymmetric flow field-flow fractionation coupled with ultraviolet and an inductively coupled plasma mass spectrometer, with and without removal of amorphous and crystalline Fe oxides using oxalate and dithionite, respectively. We found that fine colloidal P was present in two dominant sizes: (i) in associations of organic matter and amorphous Fe (Al) oxides in nanoparticles <20 nm, and (ii) in aggregates of fine clay, organic matter and Fe oxides (more crystalline Fe oxides) with a mean diameter of 170 to 225 nm. Solution P-nuclear magnetic resonance spectra indicated that the organically bound P predominantly comprised orthophosphate-monoesters. Approximately 65% of P in the WDFC was liberated after the removal of Fe oxides (especially amorphous Fe oxides). The remaining P was bound to larger-sized WDFC particles and Fe bearing phyllosilicate minerals. Intriguingly, the removal of Fe by dithionite resulted in a disaggregation of the nanoparticles, evident in higher portions of organically bound P in the <20 nm nanoparticle fraction, and a widening of size distribution pattern in larger-sized WDFC fraction. We conclude that the crystalline Fe oxides contributed to soil P sequestration by (i) acting as cementing agents contributing to soil fine colloid aggregation, and (ii) binding not only inorganic but also organic P in larger soil WDFC particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.