Application of a high electric field causes an electric shock to the heart. This is utilized in defibrillation to reestablish normal contraction rhythms during dangerous arrhythmias or in cardiac arrest. If shock-induced transmembrane potentials are large enough, they can cause tissue destruction due to irreversible electroporation (EP). Also electrochemotherapy of nearby tissues may have an adverse effect on the heart. Herein, we present experimental data on effects of electroporation in culture of cardiac cells (H9C2). The electric field was applied in short pulses of 25-3250 V/cm, 50 µs each. The viability of cells was tested by MTT assay after 24 hours. For detection of DNA fragmentation, associated with apoptosis, alkaline and neutral comet assays were performed after EP. Additionally phase contrast images of cells obtained directly after EP were analyzed. Although cell images indicated disruption of cell membranes after EP with high intensities, only a few percent of apoptotic cells and no necrotic effects in the cell nucleus could be observed in comet assay tests performed 2 hours post EP. MTT viability test showed that pulse intensities above 375 V/cm are destructive for myocytes viability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.