Recent research indicates that physiotherapy can improve motor performance of patients with cerebellar degeneration. Given the known contributions of the cerebellum to motor learning, it remains unclear whether such observable changes in performance are mediated by the cerebellum or cerebral brain areas involved in motor control and learning. The current study addressed this question by assessing the increase in gray matter volume due to sensorimotor training in cerebellar patients using voxel-based morphometry. Nineteen human subjects with pure cerebellar degeneration and matched healthy controls were trained for 2 weeks on a balance task. Postural and clinical assessments along with structural magnetic resonance imaging were performed pretraining and post-training. The main findings were as follows. First, training enhanced balance performance in cerebellar patients. Second, in contrast to controls patients revealed significantly more post-training gray matter volume in the dorsal premotor cortex. Third, training-related increase in gray matter volume was observed within the cerebellum and was more pronounced in controls than in patients. However, statistically cerebellar changes were at the trend level and thus require additional, independent confirmation. We conclude that sensorimotor training of patients with cerebellar neurodegeneration induces gray matter changes primarily within nonaffected neocortical regions of the cerebellar-cortical loop. Residual function of the cerebellum appears to be exploited suggesting either a recovery from degeneration or intact processes of cerebellar plasticity in the remaining healthy tissue.
Cluster headache (CH) is characterized by recurrent episodes of excruciatingly painful, unilateral headache attacks typically accompanied by trigeminal autonomic symptoms. Due to its rhythm with alternating episodes of pain and no-pain, it is an excellent model to investigate whether structural brain changes detected by magnetic resonance based voxel-based-morphometry (VBM) reflect the cause of the disease, may be a consequence of the underlying disease other than pain, or may simply be caused by the sensation of pain itself. We investigated 91 patients with CH in different stages of their disease using VBM and compared them to 78 age- and gender-matched healthy controls. We detected distinct regional gray matter (GM) changes in different brain regions including the temporal lobe, the hippocampus, the insular cortex and the cerebellum. The extent, location and direction of observed GM alterations depended on the state of disease and appeared dynamic in relation to pain state (i.e., pain vs. no-pain). No hypothalamic changes were detected in CH patients compared to healthy controls. The GM changes observed in this study are highly dynamic and thereby reflect the cortical plasticity of the brain in regard to pain. This observed dynamic may provide an explanation of the diverse results of previous VBM studies in pain. Regarding CH the results suggest that the disease is more likely to be caused by a network dysfunction rather than by a single malfunctioning structure.
Patients with IBS failed to effectively engage neural downregulation of rectal distension-induced pain during placebo analgesia, indicating a specific deficit in cognitive pain inhibition, which may in part be mediated by depression.
To elucidate placebo and nocebo effects in visceral pain, we conducted a functional magnetic resonance imaging (fMRI) study to analyze effects of positive and negative treatment expectations in a rectal pain model. In 36 healthy volunteers, painful rectal distensions were delivered after intravenous application of an inert substance combined with either positive instructions of pain relief (placebo group) or negative instructions of pain increase (nocebo group), each compared to neutral instructions. Neural activation during cued-pain anticipation and pain was analyzed along with expected and perceived pain intensity. Expected and perceived pain intensity were significantly increased in the nocebo group and significantly decreased in the placebo group. In the placebo group, positive expectations significantly reduced activation of the somatosensory cortex during anticipation and of the insula, somatosensory cortex, and amygdala during pain delivery when compared to neutral expectations. Within the nocebo group, negative expectations led to significantly increased insula activation during painful stimulation. Direct group contrasts during expectation modulation revealed significantly increased distension-induced activation within the somatosensory cortex in the nocebo group. In conclusion, the experience and neural processing of visceral pain can be increased or decreased by drug-specific expectations. This first brain imaging study on nocebo effects in visceral pain has implications for the pathophysiology and treatment of patients with chronic abdominal complaints such as irritable bowel syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.