MS/MS-based molecular networking strain prioritization led to the discovery of a group of cyclic depsipeptides from an endolichenic Xylaria sp. The main component, xylaroamide A (1), was obtained by LC-MS-guided isolation. The planar structure of compound 1 was elucidated via 1D and 2D NMR, as well as MS/MS data. The configurations were fully determined by the combination of advanced Marfey's analysis, partial hydrolysis, Mosher's reaction, and GIAO NMR calculation based on a restricted conformational search. A plausible biosynthetic pathway for xylaroamide A (1) involving a rare trans-acting N-methyltransferase is proposed based on bioinformatics analysis. Xylaroamide A (1) exhibited inhibitory activity against cancer cell lines BT-549 and RKO with IC 50 values of 2.5 and 9.5 μM, respectively.
Four new lipid siderophores bearing both L-threo-and L-erythro-β-hydroxyaspartic acids, potashchelins A-D (1-4), were isolated from the potash-salt-ore-derived extremophile Halomonas sp. MG34. The planar structures of 1-4 were elucidated on the basis of extensive 1D and 2D NMR studies and MS/MS data. Potashchelins 1-4 contain a hydrophilic nonapeptide headgroup sequentially consisting of β-hydroxyaspartic acid, serine, glycine, serine, serine, β-hydroxyaspartic acid, threonine, serine, and cyclic N(δ)-hydroxy-ornithine, which is appended by one of a series of fatty acids ranging from dodecanoic acid to tetradecanoic acid. The absolute configurations of the amino acids of potashchelins 1-4 were determined by C 3 and advanced Marfey's reaction, partial hydrolysis, and bioinformatics analysis, which revealed that potashchelins 1-4 bear both L-threo-and L-erythro-β-hydroxyaspartic acid. Phylogenetic analysis showed that the stand-alone β-hydroxylase, PtcA, and the fused domain with β-hydroxylase activity in PtcB are expected to be responsible for the formation of L-erythro and L-threo diastereomers, respectively. Additionally, utilizing a comparative genomics approach, we revealed an evolutionary mechanism for lipid siderophores in Halomonas involving horizontal transfer. Bioassays showed that potashchelin A and D had weak antibacterial activity against B. subtilis CPCC 100029 with an MIC value of 64 µg/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.