This paper presents the design and implementation of a monolithic CMOS DC-DC boost converter that is hardened for total dose radiation. In order to improve its radiation tolerant abilities, circuit-level and devicelevel RHBD (radiation-hardening by design) techniques were employed. Adaptive slope compensation was used to improve the inherent instability. The H-gate MOS transistors, annular gate MOS transistors and guard rings were applied to reduce the impact of total ionizing dose. A boost converter was fabricated by a standard commercial 0.35 m CMOS process. The hardened design converter can work properly in a wide range of total dose radiation environments, with increasing total dose radiation. The efficiency is not as strongly affected by the total dose radiation and so does the leakage performance.
A radiation hardened monolithic DC-DC boost converter is presented in this paper. The RHBD (Radiation-Hardening by Design) techniques applied to Radiation Hardened DC-DC Boost Converter, which has been fabricated with a standard commercial 0.35-μm CMOS process. Both circuit and device-level RHBD techniques are employed to improve the radiation tolerant abilities. All power switches, feedback control circuit, and current-sensing circuit are fabricated on-chip. Only one off-chip inductor and one off-chip capacitor are needed at the power stage, and no off-chip inductor current sensor is needed. In layout design, MOS transistors using H-GATE is to reduce the impact of TID (Total Ionizing Dose). By momentarily connecting a capacitor between the noninverting input of the error amplifier and the output of the amplifier forced the circuit to restart and allowed the circuit to continue operating to a high total dose level. The radiation experiment results show that the circuit survived 120 krad (Si ) total ionizing dose (TID) with no degradation in function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.