Uniform polyaniline (PANI) nanotubes were synthesized by a self-assembly method under relatively dilute hydrochloric acid (HCl) solution. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and UV-Vis-NIR spectroscopy were employed to characterize the morphology and molecular structure of the PANI products. SEM images show that the PANI nanotubes have uniform morphology and form compact coating on the substrate surface. For comparison, aggregated PANI was also synthesized by conventional polymerization method. The performance of the PANI products on carbon steel was studied using eletrochemical measurement and immersion corrosion experiment in 3.5 wt% NaCl aqueous solution. The corrosion potentials of carbon steel samples increase by 0.196 V and 0.060 V after coated with PANI nanotubes and aggregated PANI, respectively, and the corrosion currents density decrease by about 76.32% and 36.64%, respectively. The 6-day immersion experiment showed that the carbon steel samples coated by PANI nanotubes showed more excellent anticorrosion performance, because the more compact coating formed by PANI nanotubes may inhibit the corrosion process between the anodic and cathodic.
Porous composites have been widely used in the adsorption and catalysis field due to their special structure, abundant sites, and light weight. In this work, an environmentally friendly porous composite was successfully prepared via a facile freeze-drying method, in which cotton cellulose nanofiber (CCNF) was adopted as the main framework to construct the connected flue structure, and aramid nanofiber (ANF) was used as a reinforcer to enhance its thermal property. As-prepared porous materials retained a regulated inter-connected hole structure and controllable porosity after ice template evolution and possessed improved resistance to thermal collapse with the introduction of a small amount of aramid nanofiber, as evaluated and verified by FTIR, SEM, and TGA measurements. With the increased addition of cotton cellulose nanofiber and aramid nanofiber, the porous composites exhibited decreased porosity and increased pressure drop performance. For the CCNF/ANF-5 sample, the pressure drop was 1867 Pa with a porosity of 7.46 cm3/g, which best met the required pressure drop value of 1870 Pa. As-prepared porous composite with adjustable interior structure and enhanced thermal property could be a promising candidate in the tobacco field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.