The measurement and diagnosis of electromagnetic fields are important foundations for various electronic and optical systems. This paper presents an innovative optically controlled plasma scattering technique for imaging electromagnetic fields. On a silicon wafer, the plasma induced by the photoconductive effect is exploited as an optically controlled scattering probe to image the amplitude and phase of electromagnetic fields. A prototype is built and realizes the imaging of electromagnetic fields radiated from antennas from 870MHz to 0.2 terahertz within one second. Measured results show good agreement with the simulations. It is demonstrated that this new technology improves the efficiency of electromagnetic imaging to a real-time level, while combining various advantages of ultrafast speed, super-resolution, ultra-wideband response, low-cost and vectorial wave mapping ability. This method may initiate a new avenue in the measurement and diagnosis of electromagnetic fields.
The lifetime and the distribution of photoconductivity generated in laser-illuminated semiconductors are critical to photoconductivity-based applications. We propose a synchronized double-scanning method to measure time-resolved diffusion in the form of an afterglow embedded in the distribution map. The method combines spatial scanning of a coaxial resonator with synchronized laser scanning to map the dynamically excited conductivity on a semiconductor wafer. Thus, the photoconductivity afterglow effects can be mapped and retrieved by images of dynamic photoconductivity distribution. The photoconductivity lifetimes of silicon wafers with different thicknesses and by different lasers were measured and evaluated, which were also validated by the microwave photoconductivity decay (μ-PCD) method. In addition, the behavior of photoconductivity diffusion around a structural defect was exhibited. The method is nondestructive and can be applied in the photoconductivity property diagnostic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.