Titanium dioxide (TiO 2 ) has good ultraviolet (UV)-blocking power and is very attractive in practical applications because of such advantages as nontoxicity, chemical stability at high temperature, and permanent stability under UV exposure, for example. Development of nanoscience and -technology provides new ways for better treatment for UV-resistant films and fabrics using TiO 2 . However, the exact mechanisms of TiO 2 as a UV-blocking additive are still not very clear, and researchers hold different views on this issue. The aim of this investigation was to study systematically the mechanisms of TiO 2 as a UV-blocking additive for films and fabrics. To achieve this goal, the conventional scheme describing light interactions with fabrics was revised based on more recent progress in optical theory, and special experiments and analytic methods were used in the investigation. Several effects attributed to the nanoscale additives were identified. Moreover, detailed analyses based on the results yielded a few important suggestions useful in developing or improving both inorganic UV-blocking agents and the UV-protective films and textiles.
The study of wearable devices has become a popular research topic recently, where high-sensitivity, noise proof sensing mechanisms with long-term wearability play critical roles in a real-world implementation, while the existing mechanical sensing technologies (i.e., resistive, capacitive, or piezoelectric) have yet offered a satisfactory solution to address them all. Here, we successfully introduced a flexible supercapacitive sensing modality to all-fabric materials for wearable pressure and force sensing using an elastic ionic-electronic interface. Notably, an electrospun ionic fabric utilizing nanofibrous structures offers an extraordinarily high pressure-to-capacitance sensitivity (114 nF kPa ), which is at least 1000 times higher than any existing capacitive sensors and one order of magnitude higher than the previously reported ionic devices, with a pressure resolution of 2.4 Pa, achieving high levels of noise immunity and signal stability for wearable applications. In addition, its fabrication process is fully compatible with existing industrial manufacturing and can lead to cost-effective production for its utility in emerging wearable uses in a foreseeable future.
A mesoscopic numerical tool has been developed in this study for predictions of the effective thermal conductivities for microscale random porous media. To solve the energy transport equation with complex multiphase porous geometries, a lattice Boltzmann algorithm has been introduced to tackle the conjugate heat transfer among different phases. With boundary conditions correctly chosen, the algorithm has been initially validated by comparison with theoretical solutions for simpler cases and with the existing experimental data. Furthermore, to reflect the stochastic phase distribution characteristics of most porous media, a random internal morphology and structure generation-growth method, termed the quartet structure generation set ͑QSGS͒, has been proposed based on the stochastic cluster growth theory for generating more realistic microstructures of porous media. Thus by using the present lattice Boltzmann algorithm along with the structure generating tool QSGS, we can predict the effective thermal conductivities of porous media with multiphase structure and stochastic complex geometries, without resorting to any empirical parameters determined case by case. The methodology has been applied in this contribution to several two-and three-phase systems, and the results agree well with published experimental data, thus demonstrating that the present method is rigorous, general, and robust. Besides conventional porous media, the present approach is applicable in dealing with other multiphase mixtures, alloys, and multicomponent composites as well.
We describe the development, validation, and application of a novel PDMS-based microfluidic device for imaging leukocyte interaction with a biological substrate at defined shear force employing a parallel plate geometry that optimizes experimental throughput while decreasing reagent consumption. The device is vacuum bonded above a standard 6-well tissue culture plate that accommodates a monolayer of endothelial cells, thereby providing a channel to directly observe the kinetics of leukocyte adhesion under defined shear flow. Computational fluid dynamics (CFD) was applied to model the shear stress and the trajectory of leukocytes within the flow channels at a micron length scale. In order to test this model, neutrophil capture, rolling, and deceleration to arrest as a function of time and position was imaged in the transparent channels. Neutrophil recruitment to the substrate proved to be highly sensitive to disturbances in flow streamlines, which enhanced the rate of neutrophil-surface collisions at the entrance to the channels. Downstream from these disturbances, the relationship between receptor mediated deceleration of rolling neutrophils and dose response of stimulation by the chemokine IL-8 was found to provide a functional readout of integrin activation. This microfluidic technique allows detailed kinetic studies of cell adhesion and reveals neutrophil activation within seconds to chemotactic molecules at concentrations in the picoMolar range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.