A new amide synthesis strategy based on a fundamental mechanistic revision of the reaction of thio acids and organic azides is presented. The data demonstrate that amines are not formed as intermediates in this reaction. Alternative mechanisms proceeding through a thiatriazoline intermediate are suggested. The reaction has been applied to the preparation of simple and architecturally complex amides that are difficult to access using conventional methods. The reaction is chemoselective, effective for unprotected substrates, and compatible with aprotic and protic solvents, including water.
A combined experimental and computational mechanistic study of amide formation from thio acids and azides is described. The data support two distinct mechanistic pathways dependent on the electronic character of the azide component. Relatively electron-rich azides undergo bimolecular coupling with thiocarboxylates via an anion-accelerated [3+2] cycloaddition to give a thiatriazoline. Highly electron-poor azides couple via bimolecular union of the terminal nitrogen of the azide with sulfur of the thiocarboxylate to give a linear adduct. Cyclization of this intermediate gives a thiatriazoline. Decomposition to amide is found to proceed via retro-[3+2] cycloaddition of the neutral thiatriazoline intermediates. Computational analysis (DFT, 6-31+G(d)) identified pathways by which both classes of azide undergo [3+2] cycloaddition with thio acid to give thiatriazoline intermediates, although these paths are higher in energy than the thiocarboxylate amidations. These studies also establish that the reaction profile of electron-poor azides is attributable to a prior capture mechanism followed by intramolecular acylation.
A formal synthesis of psymberin (irciniastatin A) is presented. Notable features of the synthesis include the chemo-, regio-, and stereoselective oxidation of a 1,3-disubstituted allene, a configuration-dependent spirodiepoxide opening, the efficient syntheses of functionalized trans-2,6-disubstituted pyrans, and the union of a highly functionalized aldehyde with a pentasubstituted aryl homoenolate to give a dihydroisocumarin. [structure: see text]
The first total synthesis of roquefortine C is achieved by implementation of a novel elimination strategy to construct the thermodynamically unstable E-dehydrohistidine moiety. Molecular modeling studies are presented which explain the instability of the roquefortine C structure compared to that of isoroquefortine C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.