Node deployment is one of the fundamental tasks for underwater acoustic sensor networks (UASNs) where the deployment strategy supports many fundamental network services, such as network topology control, routing, and boundary detection. Due to the complex deployment environment in three-dimensional (3D) space and unique characteristics of underwater acoustic channel, many factors need to be considered specifically during the deployment of UASNs. Thus, deployment issues in UASNs are significantly different from those of wireless sensor networks (WSNs). Node deployment for UASNs is an attractive research topic upon which a large number of algorithms have been proposed recently. This paper seeks to provide an overview of the most recent advances of deployment algorithms in UASNs while pointing out the open issues. In this paper, the deployment algorithms are classified into three categories based on the mobility of sensor nodes, namely, (I) static deployment, (II) self-adjustment deployment, and (III) movement-assisted deployment. The differences of the representative algorithms in aspects of sensor node types, computation complexity, energy consumption, deployment objectives, and so forth, are discussed and investigated in detail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.