This paper introduces a method for feature extraction and emotion recognition based on empirical mode decomposition (EMD). By using EMD, EEG signals are decomposed into Intrinsic Mode Functions (IMFs) automatically. Multidimensional information of IMF is utilized as features, the first difference of time series, the first difference of phase, and the normalized energy. The performance of the proposed method is verified on a publicly available emotional database. The results show that the three features are effective for emotion recognition. The role of each IMF is inquired and we find that high frequency component IMF1 has significant effect on different emotional states detection. The informative electrodes based on EMD strategy are analyzed. In addition, the classification accuracy of the proposed method is compared with several classical techniques, including fractal dimension (FD), sample entropy, differential entropy, and discrete wavelet transform (DWT). Experiment results on DEAP datasets demonstrate that our method can improve emotion recognition performance.
High-frequency electroencephalography (EEG) signals play an important role in research on human emotions. However, the different network patterns under different emotional states in the high gamma band (50-80 Hz) remain unclear. In this paper, we investigate different emotional states using functional network analysis on various frequency bands. We constructed multiple functional networks on different frequency bands and performed functional network analysis and time-frequency analysis on these frequency bands to determine the significant features that represent different emotional states. Furthermore, we verified the effectiveness of these features by using them in emotion recognition. Our experimental results revealed that the network connections in the high gamma band with significant differences among the positive, neutral, and negative emotional states were much denser than the network connections in the other frequency bands. The connections mainly occurred in the left prefrontal, left temporal, parietal, and occipital regions. Moreover, long-distance connections with significant differences among the emotional states were observed in the high frequency bands, particularly in the high gamma band. Additionally, high gamma band fusion features derived from the global efficiency, network connections, and differential entropies achieved the highest classification accuracies for both our dataset and the public dataset. These results are consistent with literature and provide further evidence that high gamma band EEG signals are more sensitive and effective than the EEG signals in other frequency bands in studying human affective perception.
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.
Emotion recognition plays an important part in human-computer interaction (HCI). Currently, the main challenge in electroencephalogram (EEG)-based emotion recognition is the non-stationarity of EEG signals, which causes performance of the trained model decreasing over time. In this paper, we propose a two-level domain adaptation neural network (TDANN) to construct a transfer model for EEG-based emotion recognition. Specifically, deep features from the topological graph, which preserve topological information from EEG signals, are extracted using a deep neural network. These features are then passed through TDANN for two-level domain confusion. The first level uses the maximum mean discrepancy (MMD) to reduce the distribution discrepancy of deep features between source domain and target domain, and the second uses the domain adversarial neural network (DANN) to force the deep features closer to their corresponding class centers. We evaluated the domain-transfer performance of the model on both our self-built data set and the public data set SEED. In the cross-day transfer experiment, the ability to accurately discriminate joy from other emotions was high: sadness (84%), anger (87.04%), and fear (85.32%) on the self-built data set. The accuracy reached 74.93% on the SEED data set. In the cross-subject transfer experiment, the ability to accurately discriminate joy from other emotions was equally high: sadness (83.79%), anger (84.13%), and fear (81.72%) on the self-built data set. The average accuracy reached 87.9% on the SEED data set, which was higher than WGAN-DA. The experimental results demonstrate that the proposed TDANN can effectively handle the domain transfer problem in EEG-based emotion recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.