Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.
Background: Cervical cancer is the most common malignancy of the female lower genital tract. In our previous study, we found that TLR4 promotes cervical cancer cell growth in vitro. The aim of this study was to further explore the role of TLR4 in HPV-related cervical cancer in vivo by using a nude mouse xenograft model. Methods: Cervical cancer-derived HeLa and CaSki cells (5 × 10 7 /mL) were either stimulated with an optimal concentration of LPS for the appropriate time (HeLa cells were treated with 1 μg/mL LPS for 1 h, and CaSki cells were treated with 2 μg/mL LPS for 1.5 h) or transfected with TLR4 shRNA and then injected subcutaneously into the dorsal right posterior side of nude mice. The shortest width and longest diameter of the transplanted tumors in the nude mice were measured every 3 days.TLR4, IL-6,iNOS, IL-8,COX-2, MIP-3α, TGF-β1 and VEGF expression levels in the transplanted tumor tissue were detected by immunohistochemistry. Results: The tumor formation rate was 100% in both HeLa and CaSki nude mouse groups. The tumors grew faster, and the cachexia symptoms were more serious in the LPS groups than in the control group. In contrast, the tumors grew slower, and the cachexia symptoms were milder in the TLR4-silenced groups. TLR4, iNOS, IL-6, MIP-3α and VEGF were highly expressed in the transplanted tumor tissues from the LPS groups, and their expression levels were decreased in the TLR4-silenced groups. Conclusion: TLR4 expression is closely associated with the tumorigenesis and growth of HPV-positive cervical cancer; TLR4 promotes HPV-positive cervical tumor growth and facilitates the formation of a local immunosuppressive microenvironment. Eventually, these conditions may lead to cervical cancer development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.