Chemoresistance and metastasis are the major challenges for the current ovarian cancer treatment. Understanding the mechanisms of ovarian cancer progression and metastasis is critically important for developing novel therapies. The advances in extracellular vesicles (EVs) research in recent years have attracted extensive attention. EVs contain a variety of proteins, RNAs, DNAs, and metabolites. Accumulating evidence indicates that ovarian cancer cells secrete a large amount of EVs, playing an important role in tumor progression and recurrence. In the microenvironment of ovarian tumor, EVs participate in the information transmission between stromal cells and immune cells, promoting the immune escape of ovarian cancer cells and facilitating cancer metastasis. Here, we review the recent advances of EVs in chemoresistance, mechanisms of metastasis, and immune evasion of ovarian cancer. Furthermore, we also discuss the challenges of EV research and future application of EVs as promising biomarker sources in response to therapy and in therapy-delivery approaches for ovarian cancer patients.
Peroxiredoxin 1 (Prdx1) is an antioxidant and plays an important role in H2O2-mediated cell signaling. We previously found that the expression level of Prdx1 was elevated in esophagus squamous cell carcinoma (ESCC) tissue using a proteomics approach. Since overexpressed protein can induce an autoimmune response, to further examine whether serum from ESCC patients exhibits immunoreactivity against Prdx1, autoantibody responses to Prdx1 were evaluated by ELISA, western blotting and indirect immunofluorescence assay in sera from patients with ESCC and normal individuals. Immunohistochemical study with tissue array slides and western blot analysis with cancer cell lines were also performed to analyze the protein expression profiles of Prdx1 in ESCC tissues and cancer cell lines. The results demonstrated that the positive rate of autoantibody against Prdx1 in ESCC sera was 13.2% (9/68), whereas this rate was 0% (0/89) in normal individuals. Data also showed that expression of Prdx1 was significantly increased in ESCC tissues when compared to expression in paired adjacent normal tissues (P<0.05). The data indicate that Prdx1 may contribute to malignant transformation of the esophagus, and may be used as a biomarker in the immunodiagnosis of ESCC.
Hepatocellular carcinoma (HCC) is a type of cancer with a very poor prognosis. Although α-fetoprotein (AFP) is the most effective marker available to detect HCC, the sensitivity and specificity are not optimal. Therefore, there is a need for the development of more sensitive and specific methods that can supplement AFP in the early detection of this cancer. In this study, autoantibody responses to glucose-regulated protein 78 (GRP78) were evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting and indirect immunofluorescence assay in sera from patients with HCC, liver cirrhosis (LC) and chronic hepatitis (CH), as well as from normal human individuals. Immunohistochemistry (IHC) with tissue array slides was also preformed to analyze protein expression profiles of GRP78 in HCC and control tissues. The prevalence of autoantibodies against GRP78 was 35.5% (27/76) in HCC, which was significantly higher than that in LC, CH and normal human sera (NHS; P<0.01). The average titer of autoantibodies against GRP78 in HCC sera was higher compared to that in LC, CH and NHS(P<0.01). When both autoantibodies against GRP78 and AFP were used simultaneously as diagnostic markers, sensitivity reached 71.4%. Our data indicate that anti-GRP78 autoantibodies may be potential diagnostic markers for HCC, especially in conjunction with AFP.
Tumor-associated antigens (TAAs) recognized by cellular and/or humoral effectors of the immune system are attractive targets for diagnostic and therapeutic approaches to human cancer. Different approaches can be used to comprehensively characterize and validate the identified TAA/anti-TAA systems, which are potential biomarkers in cancer immunodiagnosis. Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. The high fatality rate of HCC within one year after its detection might be partly attributed to a lack of diagnostic methods that enable the early detection. Our previous studies have shown that novel autoantibodies can appear which are not detected prior to pre-malignant conditions during transition from chronic liver disease to HCC. The hypothesis we advance is the transition to malignancy can be associated with autoantibody response to certain cellular proteins that might have some role in tumorigenesis. We propose that the information that the cancer patient’s immune system is conveying in the form of autoantibodies to tumor-associated antigens (TAAs) should be utilized to a greater extent in identifying early signs of tumorigenesis. In this review, we will focus on the important features of TAA and the possibility that autoantibodies to TAAs can be used as biomarkers in immunodiagnosis and prognosis of HCC.
Cancerous inhibitor of PP2A (CIP2A) is an intracellular endogenous protein phosphatase 2A (PP2A) inhibitor with oncogenic activities. Initially identified as a tumor-associated antigen (TAA) in gastric and liver cancer patients, CIP2A was overexpressed in a variety of cancer types. The overexpression of CIP2A in cancer cells is associated with increased cell proliferation. However, the mechanism of CIP2A in cancer cell proliferation remains poorly understood. In the present study, we reported that CIP2A can regulate AKT phosphorylation at S473 under growth factor stimulation and our results also showed that CIP2A may promote cell proliferation through the AKT signaling pathway. Notably, depletion of CIP2A did not induce a global change of AKT phosphatase activity, which indicated that CIP2A may recognize specific AKT targets and play certain roles in the signaling pathway. In addition, we detected that CIP2A expression was associated with mTOR phosphorylation. Our further analysis corroborated the relationship between CIP2A and AKT-mTOR signaling pathway. Therefore, our study addressed a novel role of CIP2A in mediating cancer progression through interacting with the AKT-mTOR signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.