This work studies the deviations of the error exponent of the constant composition code ensemble around its expectation, known as the error exponent of the typical random code (TRC). In particular, it is shown that the probability of randomly drawing a codebook whose error exponent is smaller than the TRC exponent is exponentially small; upper and lower bounds for this exponent are given, which coincide in some cases. In addition, the probability of randomly drawing a codebook whose error exponent is larger than the TRC exponent is shown to be double-exponentially small; upper and lower bounds to the double-exponential exponent are given. The results suggest that codebooks whose error exponent is larger than the error exponent of the TRC are extremely rare. The key ingredient in the proofs is a new large deviations result of type class enumerators with dependent variables.
We consider the problem of block-coded communication, where in each block, the channel law belongs to one of two disjoint sets. The decoder is aimed to decode only messages that have undergone a channel from one of the sets, and thus has to detect the set which contains the prevailing channel. We begin with the simplified case where each of the sets is a singleton. For any given code, we derive the optimum detection/decoding rule in the sense of the best trade-off among the probabilities of decoding error, false alarm, and misdetection, and also introduce sub-optimal detection/decoding rules which are simpler to implement. Then, various achievable bounds on the error exponents are derived, including the exact single-letter characterization of the random coding exponents for the optimal detector/decoder. We then extend the random coding analysis to general sets of channels, and show that there exists a universal detector/decoder which performs asymptotically as well as the optimal detector/decoder, when tuned to detect a channel from a specific pair of channels. The case of a pair of binary symmetric channels is discussed in detail.
We analyze the optimal tradeoff between the error exponent and the excess-rate exponent for variable-rate Slepian-Wolf codes. In particular, we first derive upper (converse) bounds on the optimal error and excess-rate exponents, and then lower (achievable) bounds, via a simple class of variable-rate codes which assign the same rate to all source blocks of the same type class. Then, using the exponent bounds, we derive bounds on the optimal rate functions, namely, the minimal rate assigned to each type class, needed in order to achieve a given target error exponent. The resulting excess-rate exponent is then evaluated. Iterative algorithms are provided for the computation of both bounds on the optimal rate functions and their excess-rate exponents. The resulting Slepian-Wolf codes bridge between the two extremes of fixed-rate coding, which has minimal error exponent and maximal excess-rate exponent, and averagerate coding, which has maximal error exponent and minimal excess-rate exponent.
We consider a Shannon cipher system for memoryless sources, in which distortion is allowed at the legitimate decoder. The source is compressed using a rate distortion code secured by a shared key, which satisfies a constraint on the compression rate, as well as a constraint on the exponential rate of the excess-distortion probability at the legitimate decoder. Secrecy is measured by the exponential rate of the exiguous-distortion probability at the eavesdropper, rather than by the traditional measure of equivocation. We define the perfect secrecy exponent as the maximal exiguous-distortion exponent achievable when the key rate is unlimited. Under limited key rate, we prove that the maximal achievable exiguous-distortion exponent is equal to the minimum between the average key rate and the perfect secrecy exponent, for a fairly general class of variable key rate codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.