Aim: To study the antifungal activity and plant beneficial traits of a broad-spectrum antagonistic fluorescent pseudomonad strain, PUPa3. Methods and Results: Strain PUPa3 was isolated from the rhizosphere soil of rice and identified as Pseudomonas aeruginosa on the basis of biochemical tests and by comparison of 16S rDNA sequences. This bacterium exhibits a broad-spectrum antifungal activity towards phytopathogenic fungi. The antifungal metabolite by PUPa3 was extracted, purified and characterized using nuclear magnetic resonance (NMR) and mass spectroscopy (MS). Production of indole-3-acetic acid (IAA), siderophores, phosphatase and protease in PUPa3 was determined. Strain PUPa3 did not produce hydrogen cyanide, cellulase and pectinase. Conclusion: The antifungal metabolite produced by PUPa3 has been identified as phenazine-1-carboxamide (PCN) on the basis of NMR and MS data. Strain PUPa3 showed a broad-spectrum antifungal activity towards a range of phytopathogenic fungi. This bacterium also showed several plant growth-promoting traits but did not show the traits attributed to deleterious rhizobacteria. Significance and Impact of the Study: Present study reports the production of PCN as well as IAA for the first time by a saprophytic P. aeruginosa strain PUPa3. Because of the production of siderophore, growth hormone, protease and phosphatase and its innate fungicidal potential, this strain can be used as biofertilizer and antagonist against a range of phytopathogenic fungi that infect rice, groundnut, tobacco, chili, mango, sugarcane, tea, cotton and banana.
Misaminoacylation of 3,4-dihydroxyphenylalanine (Dopa) molecules to tRNA(Tyr) by endogenous tyrosyl-tRNA synthetase allowed the quantitative replacement of tyrosine residues with a yield of over 90 % by an in vivo residue-specific incorporation strategy, to create, for the first time, engineered mussel adhesive proteins (MAPs) in Escherichia coli with a very high Dopa content, close to that of natural MAPs. The Dopa-incorporated MAPs exhibited a superior surface adhesion and water resistance ability by assistance of Dopa-mediated interactions including the oxidative Dopa cross-linking, and furthermore, showed underwater adhesive properties comparable to those of natural MAPs. These results propose promising use of Dopa-incorporated engineered MAPs as bioglues or adhesive hydrogels for practical underwater applications.
Misaminoacylation of 3,4‐dihydroxyphenylalanine (Dopa) molecules to tRNATyr by endogenous tyrosyl‐tRNA synthetase allowed the quantitative replacement of tyrosine residues with a yield of over 90 % by an in vivo residue‐specific incorporation strategy, to create, for the first time, engineered mussel adhesive proteins (MAPs) in Escherichia coli with a very high Dopa content, close to that of natural MAPs. The Dopa‐incorporated MAPs exhibited a superior surface adhesion and water resistance ability by assistance of Dopa‐mediated interactions including the oxidative Dopa cross‐linking, and furthermore, showed underwater adhesive properties comparable to those of natural MAPs. These results propose promising use of Dopa‐incorporated engineered MAPs as bioglues or adhesive hydrogels for practical underwater applications.
Fluorescent pseudomonads from banana rhizospheric soil were isolated and screened for the production of enzymes and hormones such as phosphatase, indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, protease, and antifungal metabolites. Of 95 isolates, 50 (52%) isolates solubilized tri-calcium phosphate (TCP), 63 (66%) isolates produced plant growth hormone IAA, 10 (11%) isolates exhibited ACC deaminase, and 23 (24%) isolates produced protease. Isolates were screened for antifungal activity toward phytopathogenic fungi. Gene-specific primers have identified the putative antibiotic producing isolates. These putative isolates were grown in the production media and production of antibiotics was confirmed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Genotypic analysis by BOX (bacterial repetitive BOX element)-polymerase chain reaction (PCR) resulted into three distinct genomic clusters at a 50% similarity level and 62 distinct BOX profiles. Based on the sequence similarity of 16S rRNA and construction of subsequent phylogenetic tree analysis, isolates were designated as Pseudomonas monteilii, P. plecoglossicida, P. fluorescens, P. fulva, P. mosselii, P. aeruginosa, P. alcaligenes, and P. pseudoalcaligenes. Present study revealed the genetic and functional diversity among isolates of fluorescent pseudomonads associated with rhizospheric soil of banana and also identified P. monteilii as dominant species. The knowledge on genetic and functional diversity of fluorescent pseudomonads associated with banana rhizosphere is useful to understand their ecological role and for their utilization in sustainable agriculture.
We describe the simple bioconjugation strategy in combination of periodate chemistry and unnatural amino acid incorporation. The residue specific incorporation of 3,4-dihydroxy-l-phenylalanine can alter the properties of protein to conjugate into the polymers. The homogeneously modified protein will yield quinone residues that are covalently conjugated to nucleophilic groups of the amino polysaccharide. This novel approach holds great promise for widespread use to prepare protein conjugates and synthetic biology applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.