Abstract-This paper presents designs of novel E-plane spiro meander line uniplanar compact electromagnetic bandgap (E-SMLUC-EBG) and H-plane spiro meander line uniplanar compact electromagnetic bandgap (H-SMLUC-EBG) structures. The proposed EBG has been applied in mutual coupling reduction of a dual-element multiple input multiple output (MIMO) antenna system for WLAN by placing an EBG structure between the radiating antennas. Compact size of EBG helps in reducing the edge to edge distance between antennas which is 0.14λ 0 in this case, and it increases the compactness of integrated circuit. It gives 19 dB and 11 dB simulated mutual coupling reduction in E-plane and Hplane respectively at 5.8 GHz. Measured isolation improvement of 20.3 dB for E-plane and 14.7 dB for H-plane has been achieved. This coupling reduction is also confirmed by surface current and correlation coefficient plots. The four-element (2 × 2) MIMO antenna system with proposed EBG is also simulated.
This paper presents design of novel uniplanar compact Electromagnetic Band Gap (EBG) structure and its application in enhancement of isolation in H-Plane of MIMO antenna system for WLAN (5.8 GHz). Isolation enhancement or coupling reduction of 5.6 dB is achieved by etching out the proposed EBG structure from the ground plane of microstrip patch MIMO antenna. Center to center distance is reduced to 0.45λ 0 due to compactness of EBG. A metal line strip between radiating patches is used for further reduction in mutual coupling at 5.8 GHz. There is significant enhancement of 16.2 dB in isolation due to the introduction of metal line strip. Hence the total 21.8 dB reduction in mutual coupling is achieved and this coupling reduction is also verified by surface current plots and measured result. The envelope correlation coefficient (ECC) is less than 0.01 and channel capacity loss (CCL) is less than 0.1 bps/Hz at operating frequency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.