Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as L-DOPAinduced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(Ϯ)propranolol], a nonselective -adrenergic receptor (AR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (Ϯ)propranolol as an adjunct to therapy with L-DOPA. We first determined whether (Ϯ)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF L-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (Ϯ)propranolol on markers of striatal activity known to be involved in LID. To determine whether (Ϯ)propranolol reduces LID through AR blockade, we subsequently examined each enantiomer separately because only the (Ϫ)enantiomer has significant AR affinity. We next investigated the effects of a localized striatal AR blockade on LID by cannulating the region and microinfusing (Ϯ)propranolol before systemic L-DOPA injections. Results showed that a dose range of (Ϯ)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (Ϫ)propranolol had anti-LID properties indicating AR-specific effects. Aberrant striatal signaling associated with LID was normalized with (Ϯ)propranolol cotreatment, and intrastriatal (Ϯ)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (Ϯ)propranolol reduces LID through AR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action.
Repeated exposure to sub-lethal insults has been reported to result in neuroprotection against a subsequent deleterious insult. The purpose of this study was to evaluate whether repeated exposure (preconditioning) to a non-5-HT depleting dose of MDMA in adult rats provides neuroprotection against subsequent MDMA induced 5-HT depletion. Treatment of rats with MDMA (10 mg/kg, ip every 2 hrs for 4 injections) resulted in a 50-65% depletion of 5-HT in the striatum, hippocampus and cortex, and these depletions were significantly attenuated in rats that received a preconditioning regimen of MDMA (10 mg/kg, ip daily for 4 days). The 5-HT depleting regimen of MDMA also resulted in a 40-80% reduction in 5-HT transporter immunoreactivity (SERTir), and the reduction in SERTir also was completely attenuated in MDMA preconditioned animals. Preconditioning with MDMA (10 mg/kg, i.p.) daily for 4 days provided neuroprotection against methamphetamineinduced 5-HT depletion, but not DA depletion, in the striatum. Additional studies were conducted to exclude the possibility that alterations in MDMA pharmacokinetics or MDMA induced hyperthermia in rats previously exposed to MDMA contributes towards neuroprotection. During the administration of the 5-HT depleting regimen of MDMA, there was no difference in the extracellular concentration of the drug in the striatum of rats that had received 4 prior, daily injections of vehicle or MDMA. Moreover, there was no difference in the hyperthermic response to the 5-HT depleting regimen of MDMA in rats that had earlier received 4 daily injections of vehicle or MDMA. Furthermore, hyperthermia induced by MDMA during preconditioning appears not to contribute toward neuroprotection, inasmuch as preconditioning with MDMA at a low ambient temperature at which hyperthermia was absent did not alter the neuroprotection provided by the preconditioning regimen. Thus, prior exposure to MDMA affords protection against the long-term depletion of brain 5-HT produced by subsequent MDMA administration. The mechanisms underlying preconditioninginduced neuroprotection for MDMA remain to be determined.
While L-3,4-dihydroxyphenylalanine (L-DOPA) remains the standard treatment for Parkinson’s disease (PD), long-term efficacy is often compromised by L-DOPA-induced dyskinesia (LID). Recent research suggests that targeting the noradrenergic (NE) system may provide relief from both PD and LID, however, most PD patients exhibit NE loss which may modify response to such strategies. Therefore this investigation aimed to characterize the development and expression of LID and the anti-dyskinetic potential of the α2- and β-adrenergic receptor antagonists idazoxan and propranolol, respectively, in rats receiving 6-OHDA lesions with (DA lesion) or without desipramaine protection (DA + NE lesion). Male Sprague–Dawley rats (N = 110) received unilateral 6-hydroxydopamine lesions. Fifty-three rats received desipramine to protect NE neurons (DA lesion) and 57 received no desipramine reducing striatal and hippocampal NE content 64% and 86% respectively. In experiment 1, the development and expression of L-DOPA-induced abnormal involuntary movements (AIMs) and rotations were examined. L-DOPA efficacy using the forepaw adjusting steps (FAS) test was also assessed in DA- and DA + NE-lesioned rats. In experiment 2, DA- and DA + NE-lesioned rats received pre-treatments of idazoxan or propranolol followed by L-DOPA after which the effects of these adrenergic compounds were observed. Results demonstrated that moderate NE loss reduced the development and expression of AIMs and rotations but not L-DOPA efficacy while anti-dyskinetic efficacy of α2- and β-adrenergic receptor blockade was maintained. These findings suggest that the NE system modulates LID and support the continued investigation of adrenergic compounds for the improved treatment of PD.
Dopamine (DA) replacement therapy with L-DOPA continues to be the primary treatment of Parkinson's disease; however, long-term therapy is accompanied by L-DOPA-induced dyskinesias (LID). Several experimental and clinical studies have established that Propranolol, a β-adrenergic receptor antagonist, reduces LID without affecting L-DOPA's efficacy. However, the exact mechanisms underlying these effects remain to be elucidated. The aim of the current study was to evaluate the anti-dyskinetic profile of Propranolol against a panel of DA replacement strategies, as well as elucidate the underlying neurochemical mechanisms. Results indicated that Propranolol, in a dose-dependent manner, reduced LID, without affecting motor performance. Propranolol failed to alter dyskinesia produced by the D1 receptor agonist, SKF81297 (0.08 mg/kg, sc), or the D2 receptor agonist, Quinpirole (0.05 mg/kg, sc). These findings suggested a presynaptic mechanism for Propranolol's anti-dyskinetic effects, possibly through modulating L-DOPA-mediated DA efflux. To evaluate this possibility, microdialysis studies were carried out in the DA-lesioned striatum of dyskinetic rats and results indicated that co-administration of Propranolol (20 mg/kg, ip) was able to attenuate L-DOPA- (6 mg/kg, sc) induced DA efflux. Therefore, Propranolol's anti-dyskinetic properties appear to be mediated via attenuation of L-DOPA-induced extraphysiological efflux of DA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.