There is an urgent need to develop new tuberculosis (TB) vaccines to safely and effectively boost Bacille Calmette-Guérin (BCG)-triggered T cell immunity in humans. AdHu5Ag85A is a recombinant human type 5 adenovirus (AdHu5)-based TB vaccine with demonstrated efficacy in a number of animal species, yet it remains to be translated to human applications. In this phase 1 study, we evaluated the safety and immunogenicity of AdHu5Ag85A in both BCG-naïve and previously BCG-immunized healthy adults. Intramuscular immunization of AdHu5Ag85A was safe and well tolerated in both trial volunteer groups. Moreover, although AdHu5Ag85A was immunogenic in both trial volunteer groups, it much more potently boosted polyfunctional CD4(+) and CD8(+) T cell immunity in previously BCG-vaccinated volunteers. Furthermore, despite prevalent preexisting anti-AdHu5 humoral immunity in most of the trial volunteers, we found little evidence that such preexisting anti-AdHu5 immunity significantly dampened the potency of AdHu5Ag85A vaccine. This study supports further clinical investigations of the AdHu5Ag85A vaccine for human applications. It also suggests that the widely perceived negative effect of preexisting anti-AdHu5 immunity may not be universally applied to all AdHu5-based vaccines against different types of human pathogens.
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Respiratory and enteric diseases continue to be two major causes of economic losses to the cattle industry worldwide. Despite their multifactorial etiology, the currently available diagnostic tests for bovine respiratory disease complex (BRDC) and bovine enteric disease (BED) are single-pathogen-tests. DNA microarray when combined with multiplex polymerase chain reaction (PCR) is a powerful tool in detection and differentiation of multiple pathogens in a single sample. This study reports development and initial validation of two independent highly sensitive and specific multiplex PCR-electronic microarray assays, one for the detection and differentiation of pathogens of the BRDC and the other for detection and differentiation of pathogens of the BED. The BRDC multiplex PCR-microarray assay was able to detect and differentiate four bacteria (Mannheimia haemolytica, Histophilus somni, Pasteurella multocida, and Mycoplasma bovis) and five viruses [bovine parainfluenza virus-3, bovine respiratory syncytial virus, bovine herpesvirus-1, bovine coronavirus (BCoV), and bovine viral diarrhea virus (BVDV)] associated with BRDC. The BED multiplex PCR- microarray- assay was able to detect and differentiate four bacteria (Clostridium perfringens, Escherichia coli, Salmonella enterica Dublin, and Salmonella enterica Typhimurium), three protozoa (Eimeria zuernii, Eimeria bovis, and Cryptosporidium parvum), and four viruses (bovine torovirus, bovine rotavirus, BCoV, and BVDV) associated with the BED. Both assays detected their respective targets individually or in combination when present. The limit-of-detection of each assay at the PCR amplification and DNA microarray levels was determined using previously titrated laboratory amplified target pathogens or using quantified synthetic nucleotides. Both assays showed very high analytical sensitivity and specificity, and were validated using a limited number of clinical samples. The BRDC and BED multiplex PCR- microarray-assays developed in this study, with further clinical validation, could be used in veterinary diagnostic laboratories for the rapid and simultaneous identification of pathogens to facilitate quick and accurate decision making for the control and treatment of these two economically important disease complexes. Furthermore, these assays could be very effective tools in epidemiological studies as well as for screening of healthy animals to identify carriers that may potentially develop BRDC or BED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.