BackgroundNumerous groups have developed software applications (apps) for use by community health workers (CHWs) in hard-to-reach settings. However, these have either not been based on clinical guidelines or are not freely available. Our objectives were to (1) design and develop an app for use by CHWs; and (2) conduct preliminary testing of the app to identify potential obstacles.MethodsWe used the principle of human-centred design to develop an app programmed to an Android operating system. We used a mixed-methods approach which included site observations, meetings with stakeholders and the app development team, and laboratory simulation to fine tune the design. The ‘Mobile Application Rating Scale’ (MARS) was used for testing reliability and quality. We also assessed the validity of the app by matching the uploaded data with ‘gold standard’ preset answers.ResultsDepending on human–computer interactions, the app has reminder, advisor, critic and guide functions which can facilitate CHWs to make clinical decisions. We found the app is usable based on the final score of the MARS tool, and that the entered data were accurate. We present the simple procedures that were followed to develop this Android app. The app, including all of its code, is freely available.ConclusionThe app shows promise as a tool for the management of non-communicable disease in a rural setting in India. The next step will be to refine the app in a field setting and then to evaluate its efficacy in a large-scale clinical trial.
Electronic excitation energy transfer is a ubiquitous process that has generated prime research interest since its discovery. Recently developed variational polaron transformation-based second-order master equation is capable of interpolating between Förster and Redfield limits with exceptional accuracy. Forms of spectral density functions studied so far through the variational approach provide theoretical support for various experiments. Recently introduced ohmic like spectral density function that can account for logarithmic perturbations provides generality and exposition to a unique and practical set of environments. In this paper, we exploit the energy transfer dynamics of a two-level system attached to an ohmic like spectral density function with logarithmic perturbations using a variational polaron transformed master equation. Our results demonstrate that even for a relatively large bath coupling strength, quantum coherence effects can be increased by introducing logarithmic perturbations of the order of one and two in super-ohmic environments. Moreover, for particular values of the ohmicity parameter, the effect of logarithmic perturbations is observed to be insignificant for the overall dynamics. In regard to ohmic environments, as logarithmic perturbations increase, damping characteristics of the coherent transient dynamics also increase in general. It is also shown that, having logarithmic perturbations of the order of one in an ohmic environment can result in a less efficient energy transfer for relatively larger system bath coupling strengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.