CNTs are proposed as a promising candidate against copper in deep submicron IC interconnects. Still this technology is in its infancy. Most available literatures on performance predictions of CNT interconnects, have focused only on interconnect geometries using segregated CNTs. Yet during the manufacturing phase, CNTs are obtained usually as a mixture of single-walled and multi-walled CNTs (SWCNTs and MWCNTs). Especially in case of SWCNTs; it is usually available as a mixture of both Semi conducting CNTs and metallic CNTs. This paper attempts to answer whether segregation is inevitable before using them to construct interconnects. This paper attempt to compare the performance variations of bundled CNT interconnects, where bundles are made of segregated CNTs versus mixed CNTs, for future technology nodes using electrical model based analysis. Also a proportionate mixing of different CNTs has been introduced so as to yield a set of criteria to aid the industry in selection of an appropriate bundle structure for use in a specific application with optimum performance. It was found that even the worst case performance of geometries using a mixture of SWCNTs and MWCNTs was better than copper. These results also reveal that, for extracting optimum performance vide cost matrix, the focus should be more on diameter controlled synthesis than on segregation.
Single walled carbon nanotubes (SWCNTs) and bundled CNTs have emerged as promising candidates for future VLSI interconnects material due to their excellent inherent electrical and thermal properties. The work in this paper attempts to statistically analyse the effect of process variation in contact resistance on the interconnect delay by using Monte-Carlo method. The work in this paper attempts to statistically analyse the effect of process variation in contact resistance on the latency of CNT interconnect using Monte-Carlo method. This paper makes an effort to evaluate the suitability of SWCNTs and bundled CNTs as futuristic VlSI interconnects in par with ITRS predictions with its inherent process variations in the contact resistance value. It is found that bundled CNTs can offer better performance than prediction and the performance of SWCNTs are getting highly limited by contact resistance variations.Index Terms-Carbon nanotube, interconnect, and single walled carbon nanotube, Bundled CNT, contact resistance, performance analysis, and statistical analysis of latency.
This work has investigated the performance of Single-walled carbon nanotube bundle as futuristic interconnect material under process constraints and compared its suitability as IC interconnect material as per ITRS predictions. It also analyzes variance of each parasitic effect along with the variations in process parameters. This paper pinpoints the variables causing bottlenecks in realizing optimum performance and improving reliability. It also evaluates the effect of diameter variations of CNTs in an SWCNT bundle and metallic tube ratio on the performance and reliability for 22nm technological node. The results demonstrate that the relative variations in the resistance are critically effected by the variations in metallic tube ratios rather than diameter variations. The diameter variation introduces its critical effect only at global level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.