Neuropilin-1 (NRP1) guides the development of the nervous and vascular systems. Binding to either semaphorins or VEGF, NRP1 acts with plexins to regulate neuronal guidance, or with VEGFR2 to mediate vascular development. We have generated two monoclonal antibodies that bind to the Sema- and VEGF-binding domains of NRP1, respectively. Both antibodies reduce angiogenesis and vascular remodeling, while having little effect on other VEGFR2-mediated events. Importantly, anti-NRP1 antibodies have an additive effect with anti-VEGF therapy in reducing tumor growth. Vessels from tumors treated with anti-VEGF show a close association with pericytes, while tumors treated with both anti-NRP1 and anti-VEGF lack this organization. We propose that blocking NRP1 function inhibits vascular remodeling, rendering vessels more susceptible to anti-VEGF therapy.
Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF 165 . Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF 165
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.