The control of non-equilibrium quantum dynamics in many-body systems is challenging as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we show that coherent revivals associated with so-called quantum many-body scars can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer complex dynamics in many-body systems and enabling potential applications in quantum information science.
The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems1,2. In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation3–5. We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state6,7. Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits8 and a toric code state on a torus with sixteen data and eight ancillary qubits9. Finally, we use this architecture to realize a hybrid analogue–digital evolution2 and use it for measuring entanglement entropy in quantum simulations10–12, experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars13,14. Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology.
Finding optimal correction of errors in generic stabilizer codes is a computationally hard problem, even for simple noise models. While this task can be simplified for codes with some structure, such as topological stabilizer codes, developing good and efficient decoders still remains a challenge. In our work, we systematically study a very versatile class of decoders based on feedforward neural networks. To demonstrate adaptability, we apply neural decoders to the triangular color and toric codes under various noise models with realistic features, such as spatially-correlated errors. We report that neural decoders provide significant improvement over leading efficient decoders in terms of the error-correction threshold. Using neural networks simplifies the process of designing wellperforming decoders, and does not require prior knowledge of the underlying noise model.
The control of many-body quantum dynamics in complex systems is a key challenge in the quest to reliably produce and manipulate large-scale quantum entangled states. Recently, quench experiments in Rydberg atom arrays [Bluvstein et al. Science 371, 1355] demonstrated that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving, generating stable subharmonic responses over a wide parameter regime. We analyze a simple, related model where these phenomena originate from spatiotemporal ordering in an effective Floquet unitary, corresponding to discrete time-crystalline behavior in a prethermal regime. Unlike conventional discrete time crystals, the subharmonic response exists only for Néel-like initial states, associated with quantum scars. We predict robustness to perturbations and identify emergent timescales that could be observed in future experiments. Our results suggest a route to controlling entanglement in interacting quantum systems by combining periodic driving with many-body scars.
Recent years have witnessed a growing interest in topics at the intersection of many-body physics and complexity theory. Many-body physics aims to understand and classify emergent behavior of systems with a large number of particles, while complexity theory aims to classify computational problems based on how the time required to solve the problem scales as the problem size becomes large. In this work, we use insights from complexity theory to classify phases in interacting manybody systems. Specifically, we demonstrate a "complexity phase diagram" for the Bose-Hubbard model with long-range hopping. This shows how the complexity of simulating time evolution varies according to various parameters appearing in the problem, such as the evolution time, the particle density, and the degree of locality. We find that classification of complexity phases is closely related to upper bounds on the spread of quantum correlations, and protocols to transfer quantum information in a controlled manner. Our work motivates future studies of complexity in many-body systems and its interplay with the associated physical phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.