Exciting therapeutic targets are emerging from CRISPR-based screens of high mutational burden adult cancers. A key question, however, is whether functional genomic approaches will yield new targets in pediatric cancers, known for remarkably few mutations which often encode proteins considered challenging drug targets. To address this, we created a first-generation Pediatric Cancer Dependency Map representing 13 pediatric solid and brain tumor types. Eighty-two pediatric cancer cell lines were subjected to genome-scale CRISPR-Cas9 loss-of-function screening to identify genes required for cell survival. In contrast to the finding that pediatric cancers harbor fewer somatic mutations, we found a similar complexity of genetic dependencies in pediatric cancer cell lines compared to adult models. Findings from the Pediatric Cancer Dependency Map provide pre-clinical support for ongoing precision medicine clinical trials. The vulnerabilities seen in pediatric cancers were often distinct from adult, indicating that repurposing adult oncology drugs will be insufficient to address childhood cancers.
The globalization of the food supply chain industry has significantly emerged today. Due to this, farm-to-fork food safety and quality certification have become very important. Increasing threats to food security and contamination have led to the enormous need for a revolutionary traceability system, an important mechanism for quality control that ensures sufficient food supply chain product safety. In this work, we proposed a blockchain-based solution that removes the need for a secure centralized structure, intermediaries, and exchanges of information, optimizes performance, and complies with a strong level of safety and integrity. Our approach completely relies on the use of smart contracts to monitor and manage all communications and transactions within the supply chain network among all of the stakeholders. Our approach verifies all of the transactions, which are recorded and stored in a centralized interplanetary file system database. It allows a secure and cost-effective supply chain system for the stakeholders. Thus, our proposed model gives a transparent, accurate, and traceable supply chain system. The proposed solution shows a throughput of 161 transactions per second with a convergence time of 4.82 s, and was found effective in the traceability of the agricultural products.
I would like to thank my co-authors, Nishant Jha, Grant Williams, Jazmine Staten, and Miles Vesper for their assistance and contributions on this work. I also would like to acknowledge my study participants for their time. This accomplishment would have not been possible without my family and friends. I thank my family for their love and support and for being an example of hard work, inspiration, and dedication. I thank my parents Hollis and Lillian Poché for their encouragement and guidance. Words cannot describe the significance of their love. I thank my sister Caroline Schneider and her husband Chris Schneider for their help and support during my studies. I thank my sister Annie Suarez, her husband Joshua Suarez, and niece Olivia Suarez for keeping me uplifted. I thank Mike and Carol Schneider for their hospitality. Last but not least, I would like to thank my friends across the United States for helping me through the hard times and demonstrating true friendship. iii TABLE OF CONTENTS
Conventional crop insurance systems are complex and often not economically feasible. Farmers are often reluctant to be covered for their crops due to lack of trust in insurance firms and the fear of delayed or non-payment of claims. In this paper, a blockchain based crop insurance solution is suggested. The solution suggested in this paper is an affordable, efficient, low cost crop insurance solution which will ensure many farmers are insured and benefiting from timely crop insurance. Currently the cost of administering insurance is an essential barrier to accessing this facility. With the proper use of blockchain based on ethereum this expense can be reduced dramatically. We have conducted various tests on platforms such as Google Cloud and found that the least throughput is 165 transactions. Upon analysis we have found that the time taken by the block formation is directly proportional to the timing of processing. The end-to-end average latency of the system was achieved as 31.2 s, which was quite effective for the infrastructure what we are using. Upon conducting acceptance testing, we found that the system suggested in the paper is effective and we are planning to release the application on open source platforms for future improvements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.