The CRISPR-Cas9 system has revolutionized gene editing both on single genes and in multiplexed loss-of-function screens, enabling precise genome-scale identification of genes essential to proliferation and survival of cancer cells1,2. However, previous studies reported that a gene-independent anti-proliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, leading to false positive results in copy number amplified regions3,4. We developed CERES, a computational method to estimate gene dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy-number-specific effect. As part of our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this dataset. We found that CERES reduced false positive results and estimated sgRNA activity for both this dataset and previously published screens performed with different sgRNA libraries. Here, we demonstrate the utility of this collection of screens, upon CERES correction, in revealing cancer-type-specific vulnerabilities.
Major efforts using loss-of-function genetic screens to systematically identify genes essential to the proliferation and survival of cancer cells have been reported [1][2][3][4][5][6][7][8][9] . Genes identified by these approaches may represent specific genetic vulnerabilities of cancer cells, suggesting treatment strategies and directing the development of novel therapeutics. The CRISPR-Cas9 genome editing system has proven to be a powerful tool to interrogate gene essentiality in cancer cell lines. Its relative ease of application, high rates of target validation, and increased specificity compared to RNA interference technology make it an ideal instrument for use in high-throughput functional genomic screening 10 .However, we and others have recently observed that measurements of genetic dependency in genome-scale CRISPR-Cas9 loss-of-function screens are influenced by the genomic copy number (CN) of the region targeted by the sgRNA-Cas9 complex [1][2][3][4] . Targeting Cas9 to DNA sequences within regions of high CN gain creates multiple DNA double-strand breaks (DSBs), inducing a gene-independent DNA damage response and a G2 cell-cycle arrest phenotype 2 .This systematic, sequence-independent effect due to DNA cleavage (copy-number effect)confounds the measurement of the consequences of gene deletion on cell viability (geneknockout effect) and is detectable even among low-level CN amplifications and deletions. In particular, this phenomenon hinders interpretation of CRISPR-Cas9 experiments in cancer cell
Recent reports of increased tolerance to artemisinin derivatives-the last widely effective class of antimalarials -bolster the medical need for new treatments. The spirotetrahydro-β-carbolines, or spiroindolones, are a new class of fast-acting and potent schizonticidal drugs displaying low nanomolar potency against Plasmodium falciparum and Plasmodium vivax clinical isolates. Spiroindolones rapidly diminish protein synthesis in P. falciparum, an effect that is ablated in parasites bearing non-synonymous mutations in the gene encoding the P-type cation-transporter ATPase4 (PfATP4). The optimized spiroindolone NITD609 shows an acceptable safety profile and pharmacokinetic properties compatible with once-daily oral dosing; and demonstrates singledose efficacy in a rodent malaria model. Collectively, these data demonstrate that NITD609 possesses a pharmacological profile suitable for a new drug candidate for the treatment of malaria.Globally, 3.3 billion people are exposed to malaria, a devastating disease that causes over 800,000 deaths each year and kills more under five-year-olds than any other infectious agent (1). Fifty years ago, malaria had been eliminated from many areas of the world through effective antimalarial drug treatments, vector control interventions and disease prevention # Corresponding authors (Winzeler@scripps.edu and Thierry.diagana@novartis.com). * These authors equally contributed to this work One-sentence summary We describe the pharmacological profile of a new antimalarial drug candidate-the spiroindolone NITD609-which through a novel mechanism of action rapidly clears a Plasmodium infection upon administration of a single oral dose in a malaria mouse model. NIH Public Access Author ManuscriptScience. Author manuscript; available in PMC 2011 September 3. (2). However, the global spread of drug resistance resulted, by the 1980s, in a substantial increase in disease incidence and mortality. Today, some encouraging epidemiological data suggest that the introduction of new drugs (notably the artemisinin-based combination therapies or ACTs) may have reversed that trend (3). Derivatives of the endoperoxide artemisinin constitute the only antimalarial drugs that remain effective in all malariaendemic regions, but recent reports suggest that decades of continuous use as monotherapies might have fostered the emergence of resistance (4-6). This realization has triggered a concerted search for new drugs that could be deployed if artemisinin resistance were to spread.Many of the therapies currently in development utilize known antimalarial pharmacophores (e.g. aminoquinolines and/or peroxides) chemically modified to overcome the liabilities of their predecessors (7). While these compounds may prove to be important in the treatment of malaria, it would be preferable to discover novel chemotypes with a distinct mechanism of action (8). However, despite significant advances in our understanding of Plasmodium genome biology, the identification and validation of new drug targets has proven challengi...
Most malaria drug development focuses on parasite stages detected in red-blood cells even though to achieve eradication next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4,000 commercially available compounds with previously demonstrated blood stage activity (IC50 < 1 μM), and identified chemical scaffolds with potent activity against both forms. From this screen, we identified an imidazolopiperazine scaffold series that was highly enriched among compounds active against Plasmodium liver stages. Our orally bioavailable lead imidazolopiperazine confers complete causal prophylactic protection (15 mg/kg) in rodent models of malaria and shows potent in vivo blood-stage therapeutic activity. The open source chemical tools resulting from our effort provide starting points for future drug discovery programs, as well as opportunities for researchers to investigate the biology of exo-erythrocytic forms.
Childhood high-risk neuroblastomas with MYCN gene amplification are difficult to treat effectively. This has focused attention on tumor-specific gene dependencies that underlie tumorigenesis and thus provide valuable targets for the development of novel therapeutics. Using unbiased genome-scale CRISPR-Cas9 approaches to detect genes involved in tumor cell growth and survival, we identified 147 candidate gene dependencies selective for MYCN-amplified neuroblastoma cell lines, compared to over 300 other human cancer cell lines. We then used genome-wide chromatin-immunoprecipitation coupled to high-throughput sequencing analysis to demonstrate that a small number of essential transcription factors-MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2-are members of the transcriptional core regulatory circuitry (CRC) that maintains cell state in MYCN-amplified neuroblastoma. To disable the CRC, we tested a combination of BRD4 and CDK7 inhibitors, which act synergistically, in vitro and in vivo, with rapid downregulation of CRC transcription factor gene expression. This study defines a set of critical dependency genes in MYCN-amplified neuroblastoma that are essential for cell state and survival in this tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.