The CRISPR-Cas9 system has revolutionized gene editing both on single genes and in multiplexed loss-of-function screens, enabling precise genome-scale identification of genes essential to proliferation and survival of cancer cells1,2. However, previous studies reported that a gene-independent anti-proliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, leading to false positive results in copy number amplified regions3,4. We developed CERES, a computational method to estimate gene dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy-number-specific effect. As part of our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this dataset. We found that CERES reduced false positive results and estimated sgRNA activity for both this dataset and previously published screens performed with different sgRNA libraries. Here, we demonstrate the utility of this collection of screens, upon CERES correction, in revealing cancer-type-specific vulnerabilities.
Major efforts using loss-of-function genetic screens to systematically identify genes essential to the proliferation and survival of cancer cells have been reported [1][2][3][4][5][6][7][8][9] . Genes identified by these approaches may represent specific genetic vulnerabilities of cancer cells, suggesting treatment strategies and directing the development of novel therapeutics. The CRISPR-Cas9 genome editing system has proven to be a powerful tool to interrogate gene essentiality in cancer cell lines. Its relative ease of application, high rates of target validation, and increased specificity compared to RNA interference technology make it an ideal instrument for use in high-throughput functional genomic screening 10 .However, we and others have recently observed that measurements of genetic dependency in genome-scale CRISPR-Cas9 loss-of-function screens are influenced by the genomic copy number (CN) of the region targeted by the sgRNA-Cas9 complex [1][2][3][4] . Targeting Cas9 to DNA sequences within regions of high CN gain creates multiple DNA double-strand breaks (DSBs), inducing a gene-independent DNA damage response and a G2 cell-cycle arrest phenotype 2 .This systematic, sequence-independent effect due to DNA cleavage (copy-number effect)confounds the measurement of the consequences of gene deletion on cell viability (geneknockout effect) and is detectable even among low-level CN amplifications and deletions. In particular, this phenomenon hinders interpretation of CRISPR-Cas9 experiments in cancer cell
Anticancer uses of non-oncology drugs have occasionally been found, but such discoveries have been serendipitous. We sought to create a public resource containing the growth-inhibitory activity of 4,518 drugs tested across 578 human cancer cell lines. We used PRISM (profiling relative inhibition simultaneously in mixtures), a molecular barcoding method, to screen drugs against cell lines in pools. An unexpectedly large number of non-oncology drugs selectively inhibited subsets of cancer cell lines in a manner predictable from the molecular features of the cell lines. Our findings include compounds that killed by inducing phosphodiesterase 3A-Schlafen 12 complex formation, vanadium-containing compounds whose killing depended on the sulfate transporter SLC26A2, the alcohol dependence drug disulfiram, which killed cells with low expression of metallothioneins, and the anti-inflammatory drug tepoxalin, which killed via the multidrug resistance protein ATP-binding cassette subfamily B member 1 (ABCB1). The PRISM drug repurposing resource (https://depmap.org/repurposing) is a starting point to develop new oncology therapeutics, and more rarely, for potential direct clinical translation. NATURE CANCER | VOL 1 | FeBRUARY 2020 | 235-248 | www.nature.com/natcancer 235 ResouRce NATuRE CANCER the remaining compounds being either chemotherapeutics (2%) or targeted oncology agents (21%).Screening results. We employed a 2-stage screening strategy whereby drugs were first screened in triplicate at a single dose (2.5 µM); 1,448 drugs screening positives were then rescreened in triplicate in an eight-point dose-response ranging from 10 µM to 610 pM ( Fig. 1c and Supplementary Table 2). Interestingly, most active compounds (774 out of 1,448, 53%) were originally developed for non-oncology clinical indications (Fig. 1d). The primary and secondary screening datasets are available on the Cancer Dependency Map portal (https://depmap.org/repurposing) and figshare (https://doi.org/10.6084/m9.figshare.9393293; Extended Data Figs. 1-4). We compared the PRISM results to two gold standard datasets: GDSC (ref. 2 ) and CTD 2 (ref. 3 ). The three datasets shared 84 compounds tested on a median of 236 common cell lines, yielding 16,650 shared data points. The PRISM dataset had a similar degree of concordance to GDSC and CTD 2 (Pearson correlations of 0.60 and 0.61, respectively over all shared data points), as the GDSC and CTD 2 datasets had to each other (Pearson correlation 0.62) (Extended Data Fig. 5a). The three datasets remained similarly concordant when the analysis was restricted to data points showing evidence of anticancer activity (Extended Data Fig. 5b). We conclude that, despite differences in assay format, sources of compounds 5 and sources of cell lines 6 , the PRISM Repurposing dataset is similarly robust compared to existing pharmacogenomic datasets.At the level of individual compound dose-responses, we note that the PRISM Repurposing dataset tends to be somewhat noisier, with a higher standard error estimated from vehicle contr...
The availability of multiple datasets comprising genome-scale RNAi viability screens in hundreds of diverse cancer cell lines presents new opportunities for understanding cancer vulnerabilities. Integrated analyses of these data to assess differential dependency across genes and cell lines are challenging due to confounding factors such as batch effects and variable screen quality, as well as difficulty assessing gene dependency on an absolute scale. To address these issues, we incorporated cell line screen-quality parameters and hierarchical Bayesian inference into DEMETER2, an analytical framework for analyzing RNAi screens (https://depmap.org/R2-D2). This model substantially improves estimates of gene dependency across a range of performance measures, including identification of gold-standard essential genes and agreement with CRISPR/Cas9-based viability screens. It also allows us to integrate information across three large RNAi screening datasets, providing a unified resource representing the most extensive compilation of cancer cell line genetic dependencies to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.