Objective: To demonstrate the levels of parathyroid hormone secretion and genetic expressions of parathyroid hormone (PTH) and PTH1 receptor (PTH1R) genes in the dental pulp stem cells (DPSCs) from different age groups before and after induction of osteogenic differentiation. In addition, we also wanted to check their correlation with the degree of osteogenic differentiation. Methods: Human primary DPSCs from three age groups (milk tooth (SHEDs), 7–12 years old; young DPSCs (yDPSCs), 20–40 years old; old DPSCs (oDPSCs), 60+ years old) were characterized for mesenchymal stem cell (MSC) markers. DPSCs were subjected to osteogenic differentiation and functional staining. Gene expression levels were analyzed by qRT-PCR. Surface receptor analysis was done by flow cytometry. Comparative protein levels were evaluated by ELISA. Results: All SHEDs, yDPSCs, and oDPSCs were found to be expressing mesenchymal stem cell markers. SHEDs showed more mineralization than yDPSCs and oDPSCs after osteogenic induction. SHEDs exhibited higher expression of PTH and PTH1R before and after osteogenic induction, and after osteogenic induction, SHEDs showed more expression for RUNX2, ALPL, and OCN. Higher levels of PTH were observed in SHEDs and yDPSCs, and the number of PTH1R positive cells was relatively lower in yDPSCs and oDPSCs than in SHEDs. After osteogenic induction, SHEDs were superior in the secretion of OPG, and the secretions of ALPL and PTH and the number of PTH1R positive cells were relatively low in the oDPSCs. Conclusions: The therapeutic quality of dental pulp stem cells is largely based on their ability to retain their stemness characteristics. This study emphasizes the criterion of aging, which affects the secretion of PTH by these cells, which in turn attenuates their osteogenic potential.
Background Tinospora cordifolia (Thunb.) Miers (Giloy) has been applied successfully as an anti-inflammatory, anti-diabetic, and even as an anti-cancer agent. Yet, to date, the application of Giloy has not been explored concerning oral cancer. Objectives To assess the effect of T cordifolia (Thunb.) Miers (Giloy) extract (TcE) on an oral cancer cell line. Methods AW13516 (oral cancer cell line) cells were treated with the prepared aqueous extract of TcE for 24 h at various concentrations ranging between 5 μg/ml and 100 μg/ml and compared with control (cells without treatment). Thee effect of the extracts on apoptosis was assessed by through Annexin V flow cytometry assay and Luminometry based assessment of Caspase 8, 9 and caspase 3/7 activity. RNA was isolated from treated cells and gene expression of selected metastatic genes (MMP1, MMP10, and CXCL8); epithelial-mesenchymal stem cell genes (TWIST1, SNAIL, ZEB1, Oct4) and stemness related genses (Nanog, Sox2) were analyzed by using a quantitative real-time PCR system. The experiments were performed in triplicates. Results Aqueous extract of TcE was found to induce apoptosis inducer in AW13516 cells in a concentration-dependent manner and was potent even at a low concentration of 5 μg/ml. The apoptosis induction was confirmed with the caspase activity assay. Treatment of the cells with the extract for 24 h exhibited a significant decrease in the expression of EMT genes in a dose-dependent manner without an effect on the metastatic genes. Conclusion Aqueous extract of TcE induces apoptosis-mediated cell death in the oral cancer cell line AW13516 while attenuating its potential for epithelial mesenchymal transition.
Breast cancer is the most prevalent type of cancer among women globally. Angiogenesis contributes significantly to breast cancer progression and dissemination. Neovascularization is concurrent with the progression and growth of breast cancer. Breast cancer cells control angiogenesis by secreting pro-angiogenic factors like fibroblast growth factor, vascular endothelial growth factor, interleukin, transforming growth factor-β, platelet-derived growth factor and several others. These pro-angiogenic factors trigger neovascularization, and thereby lead to breast cancer development and metastasis. The hypoxia-inducible factor (HIF)-regulated angiogenesis cascade is a crucial underlying factor in breast cancer growth and metastasis. To that end, several efforts have been made to identify druggable targets within the HIF-angiogenesis components. However, escape pathways are a major hindrance for targeted therapies against angiogenesis. Thus, understanding the key factors that trigger breast cancer angiogenesis is critical in elucidating ways to inhibit breast cancer.The current review provides an overview of the key growth factors that trigger breast cancer angiogenesis.
The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.