Dental pulp stem cells have emerged as a preferred source of mesenchymal stem cells, because of its easy availability and high stem cell content. Dental pulp is a specific fibrous tissue that contains heterogeneous populations of odontoblasts, fibroblasts, pericytes, progenitors, stem cells, leukocytes and neuronal cells. In this study, we propose sustained explant culture as a simple, economical and efficient process to isolate dental pulp stem cells from human Dental pulp Tissue. Historically explant cultures were used to get fibroblast cells from embryonic chick heart using plasma clot cultures. The subculture was performed by lifting mother explant (original explant) and grafting it in a new plasma clot. We modified this age old technique to suit the modern times. Here we demonstrate for the first time that the mother explant (E0) of human dental pulp tissue could be sub‐cultured consecutively seven times (E7) without displacement. This technique is highly reproducible and permits growth and proliferation of dental pulp stem cells yielding an enriched homogeneous mesenchymal stem cells population in the first passage itself as revealed by surface marker expression. These dental pulp stem cells exhibit differentiation into adipogenic, chondrogenic and osteogenic lineage revealing their mesenchymal stem cell nature. We propose that dental pulp stem cells isolated by sustained explant culture are phenotypically and functionally comparable to those obtained by enzymatic method. It is a simple, inexpensive and gentle method, which may be preferred over the conventional techniques for obtaining stem cells from other tissue sources as well especially in cases of limited starting material.
Stem cells from human exfoliated deciduous teeth (SHEDs) are considered a type of mesenchymal stem cells (MSCs) because of their unique origin from the neural crest. SHEDs can self-renewal and multi-lineage differentiation with the ability to differentiate into odontoblasts, osteoblast, chondrocytes, neuronal cells, hepatocytes, adipocytes, etc. They are emerging as an ideal source of MSCs because of their easy availability and extraordinary cell number. Ascorbic acid, or vitamin C, has many cell-based applications, such as bone regeneration, osteoblastic differentiation, or extracellular matrix production. It also impacts stem cell plasticity and the ability to sustain pluripotent activity. In this study, we evaluate the effects of ascorbic acid on stemness, paracrine secretion, and differentiation into osteoblast, chondrocytes, and adipocytes. SHEDs displayed enhanced multifaceted activity, which may have applications in regenerative therapy.
Objective: To demonstrate the levels of parathyroid hormone secretion and genetic expressions of parathyroid hormone (PTH) and PTH1 receptor (PTH1R) genes in the dental pulp stem cells (DPSCs) from different age groups before and after induction of osteogenic differentiation. In addition, we also wanted to check their correlation with the degree of osteogenic differentiation. Methods: Human primary DPSCs from three age groups (milk tooth (SHEDs), 7–12 years old; young DPSCs (yDPSCs), 20–40 years old; old DPSCs (oDPSCs), 60+ years old) were characterized for mesenchymal stem cell (MSC) markers. DPSCs were subjected to osteogenic differentiation and functional staining. Gene expression levels were analyzed by qRT-PCR. Surface receptor analysis was done by flow cytometry. Comparative protein levels were evaluated by ELISA. Results: All SHEDs, yDPSCs, and oDPSCs were found to be expressing mesenchymal stem cell markers. SHEDs showed more mineralization than yDPSCs and oDPSCs after osteogenic induction. SHEDs exhibited higher expression of PTH and PTH1R before and after osteogenic induction, and after osteogenic induction, SHEDs showed more expression for RUNX2, ALPL, and OCN. Higher levels of PTH were observed in SHEDs and yDPSCs, and the number of PTH1R positive cells was relatively lower in yDPSCs and oDPSCs than in SHEDs. After osteogenic induction, SHEDs were superior in the secretion of OPG, and the secretions of ALPL and PTH and the number of PTH1R positive cells were relatively low in the oDPSCs. Conclusions: The therapeutic quality of dental pulp stem cells is largely based on their ability to retain their stemness characteristics. This study emphasizes the criterion of aging, which affects the secretion of PTH by these cells, which in turn attenuates their osteogenic potential.
Background Tinospora cordifolia (Thunb.) Miers (Giloy) has been applied successfully as an anti-inflammatory, anti-diabetic, and even as an anti-cancer agent. Yet, to date, the application of Giloy has not been explored concerning oral cancer. Objectives To assess the effect of T cordifolia (Thunb.) Miers (Giloy) extract (TcE) on an oral cancer cell line. Methods AW13516 (oral cancer cell line) cells were treated with the prepared aqueous extract of TcE for 24 h at various concentrations ranging between 5 μg/ml and 100 μg/ml and compared with control (cells without treatment). Thee effect of the extracts on apoptosis was assessed by through Annexin V flow cytometry assay and Luminometry based assessment of Caspase 8, 9 and caspase 3/7 activity. RNA was isolated from treated cells and gene expression of selected metastatic genes (MMP1, MMP10, and CXCL8); epithelial-mesenchymal stem cell genes (TWIST1, SNAIL, ZEB1, Oct4) and stemness related genses (Nanog, Sox2) were analyzed by using a quantitative real-time PCR system. The experiments were performed in triplicates. Results Aqueous extract of TcE was found to induce apoptosis inducer in AW13516 cells in a concentration-dependent manner and was potent even at a low concentration of 5 μg/ml. The apoptosis induction was confirmed with the caspase activity assay. Treatment of the cells with the extract for 24 h exhibited a significant decrease in the expression of EMT genes in a dose-dependent manner without an effect on the metastatic genes. Conclusion Aqueous extract of TcE induces apoptosis-mediated cell death in the oral cancer cell line AW13516 while attenuating its potential for epithelial mesenchymal transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.