Abstract:The inexpensive and green method of synthesis for self-assembled micro/nano structures is an important area of emerging research. Such structures can be chemically tuned with predesigned functional properties. Therefore, they hold very good promise for future applications, e.g., biomedicine, electronic device, solar energy, gas sensing. Here we report for the first time an inexpensive and green method for chemical deposition of magnesium hydroxide (Mg(OH) 2 ) micro/nano flowers in thin films on commercial soda lime silica glass substrates at room temperature. Under identical conditions, chemically synthesized Mg(OH) 2 powders are also prepared in absence of the soda lime silica glass substrates. The condition that favors the growth of micro/nano flowers in thin films is identified from X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX) data. Finally, the possible growth mechanism of micro/nano flowers in thin films is discussed.
The grinding and polishing of a fundamentally brittle material like glass to an utmost precision level for ultra-sophisticated applications ranging from mobile devices to aerospace as well as space shuttle components to biomedical appliances pose a big challenge today. Looking simplistically, the grinding and polishing processes are basically material removal by multiple scratching at a given speed. Unfortunately however, the role of the scratching speed in affecting the material removal mechanism in sodalime-silica (SLS) glass is yet to be comprehensively understood. Therefore, the present work explores the surface and subsurface deformation mechanisms of SLS glass scratched under a normal load of 5 N at various speeds in the range of 100-1000 µm s −1 with a diamond indenter of ∼200 µm tip radius. The results show important roles of the time of contact, the tensile stress behind the indenter and the shear stress just beneath the indenter in governing the material removal mechanisms of the SLS glass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.