Analytical method validation provides a means to ensure that data are credible and reproducible. This unit will provide a brief introduction to analytical method validation as applied to cellular analysis by flow cytometry. In addition, the unit will provide practical procedures for three different types of validation. The first is a limited validation protocol that is applicable for research settings and non‐regulated laboratories. The second is validation protocol that presents the minimum validation requirements in regulated laboratories. The third is a transfer validation protocol to be used when methods are transferred between laboratories. The recommendations presented in this unit are consistent with the white papers published by the American Association of Pharmaceutical Scientists and the International Clinical Cytometry Society, as well as with Clinical Laboratory Standards Institute Guideline H62: Validation of Assays Performed by Flow Cytometry (currently in preparation). © 2018 by John Wiley & Sons, Inc.
Gene transfer into primary human CD4 T lymphocytes is a critical tool in studying the mechanism of T cell-dependent immune responses and human immunodeficiency virus-1 (HIV-1) infection. Nucleofection® is an electroporation technique that allows efficient gene transfer into primary human CD4 T cells that are notoriously resistant to traditional electroporation. Despite its popularity in immunological research, careful characterization of its impact on the physiology of CD4 T cells has not been documented. Herein, using freshly-isolated primary human CD4 T cells, we examine the effects of Nucleofection® on CD4 T cell morphology, intracellular calcium levels, cell surface activation markers, and transcriptional activity. We find that immediately after Nucleofection®, CD4 T cells undergo dramatic morphological changes characterized by wrinkled and dilated plasma membranes before recovering 1 hour later. The intracellular calcium level also increases after Nucleofection®, peaking after 1 hour before recovering 8 hours post transfection. Moreover, Nucleofection® leads to increased expression of T cell activation markers, CD154 and CD69, for more than 24 hours, and enhances the activation effects of phytohemagglutinin (PHA) stimulation. In addition, transcriptional activity is increased in the first 24 hours after Nucleofection®, even in the absence of exogenous stimuli. Therefore, Nucleofection® significantly alters the activation state of primary human CD4 T cells. The effect of transferred gene products on CD4 T cell function by Nucleofection® should be assessed after sufficient resting time post transfection or analyzed in light of the activation caveats mentioned above.
Although HIV-1 (HIV) replicates poorly in non-dividing CD4 lymphocytes, resting T cells contribute to the latent reservoir. The gammac-related cytokines reverse this block to HIV infection; however, the molecular mechanisms controlling this process are not understood. We asked whether the gammac-cytokine regulated transcription factor, signal transducer and activator of transcription 5 (STAT5), activates HIV transcription. We identified three regions in the long terminal repeat (LTR) as close matches to the STAT5 consensus-binding site and show that STAT5 binds the LTR during HIV infection. Expression of Janus kinase 3 (JAK3) or STAT5 in primary human CD4 T cells activated LTR transcription, while transactivation-incompetent dominant-negative STAT5 inhibited JAK3-induced LTR activity and infection of activated HIV-producing CD4 T-cells. In addition, overexpression of STAT5 increased virus production in unstimulated primary T cells - both the number of p24+ cells and their level of p24 production - suggesting that STAT5 promotes a permissive state for HIV infection. These data may have implications for regulation of latency and therapeutic strategies for control of HIV disease.
The current antiretroviral therapy (ART) can effectively reduce plasma HIV loads to undetectable levels, but cannot eliminate latently infected resting memory CD4 T cells that persist for the lifetime of infected patients. Therefore, designing new therapeutic approaches to eliminate these latently infected cells or the cells that produce HIV upon reactivation from latency is a priority in the ART era in order to progress to a cure of HIV. Here, we show that “designer” T cells expressing chimeric antigen receptor (CAR), CD4-CD28-CD3ζ, can target and kill HIV Env-expressing cells. Further, they secrete effector cytokines upon contact with HIV Env+ target cells that can reactivate latent HIV in a cell line model, thereby exposing those cells to recognition and killing by anti-HIV CAR+ T cells. Taken to the limit, this process could form the basis for an eventual functional or sterilizing cure for HIV in patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.