A k-means algorithm is a method for clustering that has already gained a wide range of acceptability. However, its performance extremely depends on the opening cluster centers. Besides, due to weak exploration capability, it is easily stuck at local optima. Recently, a new metaheuristic called Moth Flame Optimizer (MFO) is proposed to handle complex problems. MFO simulates the moths intelligence, known as transverse orientation, used to navigate in nature. In various research work, the performance of MFO is found quite satisfactory. This paper suggests a novel heuristic approach based on the MFO to solve data clustering problems. To validate the competitiveness of the proposed approach, various experiments have been conducted using Shape and UCI benchmark datasets. The proposed approach is compared with five state-of-art algorithms over twelve datasets. The mean performance of the proposed algorithm is superior on 10 datasets and comparable in remaining two datasets. The analysis of experimental results confirms the efficacy of the suggested approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.