The capacity of Mycobacterium tuberculosis (Mtb) to tolerate multiple antibiotics represents a major problem in tuberculosis (TB) management. Heterogeneity in Mtb populations is one of the factors that drives antibiotic tolerance during infection. However, the mechanisms underpinning this variation in bacterial population remain poorly understood. Here, we show that phagosomal acidification alters the redox physiology of Mtb to generate a population of replicating bacteria that display drug tolerance during infection. RNA sequencing of this redox-altered population revealed the involvement of iron-sulfur (Fe-S) cluster biogenesis, hydrogen sulfide (H2S) gas, and drug efflux pumps in antibiotic tolerance. The fraction of the pH- and redox-dependent tolerant population increased when Mtb infected macrophages with actively replicating HIV-1, suggesting that redox heterogeneity could contribute to high rates of TB therapy failure during HIV-TB coinfection. Pharmacological inhibition of phagosomal acidification by the antimalarial drug chloroquine (CQ) eradicated drug-tolerant Mtb, ameliorated lung pathology, and reduced postchemotherapeutic relapse in in vivo models. The pharmacological profile of CQ (Cmax and AUClast) exhibited no major drug-drug interaction when coadministered with first line anti-TB drugs in mice. Our data establish a link between phagosomal pH, redox metabolism, and drug tolerance in replicating Mtb and suggest repositioning of CQ to shorten TB therapy and achieve a relapse-free cure.
The persistence of Mycobacterium tuberculosis ( Mtb ) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence . However, the mechanisms involved in NO sensing and reorganizing Mtb 's physiology are not fully understood. Since NO damages iron-sulfur (Fe–S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe–S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR ( Rv1460 ) senses NO via its 4Fe–4S cluster and promotes persistence of Mtb by mobilizing the Fe–S cluster biogenesis system; suf operon ( Rv1460-Rv1466 ). Analysis of anaerobically purified SufR by UV–visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe–4S cluster. Atmospheric O 2 and H 2 O 2 gradually degrade the 4Fe–4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe–4S cluster by forming a protein-bound dinitrosyl-iron-dithiol complex. DNase I footprinting, gel-shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA-sequencing of MtbΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe–S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR . Lastly, MtbΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune-activated macrophages and murine lungs in a NO-dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe–S cluster metabolism and bioenergetics.
The bacterium Escherichia coli can initiate replication in the absence of the replication initiator protein DnaA and/or the canonical origin of replication oriC in a ΔrnhA background. This phenomenon, which can be primed by R-loops, is called constitutive stable DNA replication (cSDR). Whether DNA replication during cSDR initiates in a stochastic manner through the length of the chromosome or at specific sites and how E. coli can find adaptations to loss of fitness caused by cSDR remain inadequately answered. We use laboratory evolution experiments of ΔrnhA-ΔdnaA strains followed by deep sequencing to show that DNA replication preferentially initiates within a broad region located ∼0.4 to 0.7 Mb clockwise of oriC. This region includes many bisulfite-sensitive sites, which have been previously defined as R-loop-forming regions, and includes a site containing sequence motifs that favor R-loop formation. Initiation from this region would result in head-on replication-transcription conflicts at rRNA loci. Inversions of these rRNA loci, which can partly resolve these conflicts, help the bacterium suppress the fitness defects of cSDR. These inversions partially restore the gene expression changes brought about by cSDR. The inversion, however, increases the possibility of conflicts at essential mRNA genes, which would utilize only a minuscule fraction of RNA polymerase molecules, most of which transcribe rRNA genes. Whether subsequent adaptive strategies would attempt to resolve these conflicts remains an open question. IMPORTANCE The bacterium E. coli can replicate its DNA even in the absence of the molecules that are required for canonical replication initiation. This often requires the formation of RNA-DNA hybrid structures and is referred to as constitutive stable DNA replication (cSDR). Where on the chromosome does cSDR initiate? We answer this question using laboratory evolution experiments and genomics and show that selection favors cSDR initiation predominantly at a region ∼0.6 Mb clockwise of oriC. Initiation from this site will result in more head-on collisions of DNA polymerase with RNA polymerase operating on rRNA loci. The bacterium adapts to this problem by inverting a region of the genome including several rRNA loci such that head-on collisions between the two polymerases are minimized. Understanding such evolutionary strategies in the context of cSDR can provide insights into the potential causes of resistance to antibiotics that target initiation of DNA replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.