ObjectivesAMP activated protein kinase (AMPK) regulates the coordination of anabolic and catabolic processes and is an attractive therapeutic target for T2DM, obesity and metabolic syndrome. We report the anti-hyperglycemic and anti-hyperlipidemic effects of CNX-012-570 is an orally bioavailable small molecule (molecular weight of 530 Daltons) that directly activates AMPK in DIO and db/db animal models of diabetes.MethodsActivity and efficacy of the compound was tested in cell based as well as cell free systems in vitro. Male C57BL/6 mice fed with high fat diet (HFD) were assigned to either vehicle or CNX-012-570 (3 mg/kg, orally once a day) for 8 weeks (n = 8). Genetically diabetic db/db mice on chow diet were dosed with vehicle control or CNX-012-570 (2.5 mg/kg, orally once a day) for 6 weeks (n = 8).ResultsCNX-012-570 is a highly potent and orally bioavailable compound activating AMPK in both cell and cell free systems. It inhibits lipolysis (33%) and gluconeogenesis (28%) in 3T3L1 cells and rat primary hepatocytes respectively. The efficacy of the molecule was translated to both DIO and db/db animal models of diabetes. CNX-012-570 has reduced fasting blood glucose levels by 14%, body weight by 24% and fasting serum triglycerides (TG) by 24%. CNX-012-570 showed a 22% reduction in fed serum cholesterol levels and 19% increase in HDL levels.In db/db mice model, CNX-012-570 has shown 18% decrease in fed glucose and 32% decrease in fasting glucose with a 2.57% reduction in absolute HbA1c. Decrease in serum insulin and glucose AUC indicates the increased insulin sensitivity. Body weight was reduced by 13% with increased browning of adipose tissue and decreased inguinal and mesenteric fat mass. There was significant reduction in liver TG and liver total cholesterol.ConclusionsCNX-012-570 has the potential to control hyperglycemia and hyperlipidemia. It also reduces body weight gain with an additional benefit of minimizing cardiovascular risks in diabetics.
Background11ß–hydroxysteroid dehydrogenase type1 (11β-HSD1) converts inactive glucocorticoids to active glucocorticoids which, in excess, leads to development of the various risk factors of the metabolic syndrome. Recent studies clearly suggest that both increased expression and activity of 11β-HSD1 in metabolically active tissues such as liver, muscle and adipose are implicated in tissue specific dysregulation which collectively contribute to the whole body pathology seen in metabolic syndrome. In the present study we have evaluated CNX-010-49, a highly potent, selective and ‘pan tissue’ acting 11β-HSD1 inhibitor, for its potential to modulate multiple risk factors of the metabolic syndrome.MethodsMale C57B6/J mice on high fat diet (DIO mice) were orally dosed with CNX-010-49 (30 mg/kg twice daily; n = 8) or vehicle for 10 weeks. Fasting glucose, triglycerides, glycerol, free fatty acids, body weight and feed intake were measured at selected time points. At the end of the treatment an OGTT and subsequently organ histology was performed. In vitro, CNX-010-49 was evaluated in 3T3-L1 preadipocytes to assess impact on adipocytes differentiation, hypertrophy and lipolysis whereas in fully differentiated C2C12 cells and in primary mouse hepatocytes to assess the impact on glucose metabolism and hepatic glucose output respectively.ResultsCNX-010-49 a highly potent and selective pan tissue acting 11β-HSD1 inhibitor (EC50 = 6 nM) significantly inhibits glucocorticoids and isoproterenol mediated lipolysis in mature 3T3-L1 adipocytes, improves muscle glucose oxidation, reduces proteolysis and enhances mitochondrial biogenesis. Also a significant inhibition of gluconeogenesis in primary mouse hepatocytes was observed. The treatment with CNX-010-49 resulted in a significant decrease in fasting glucose, improved insulin sensitivity and glucose tolerance. Treatment also resulted in a significant decrease in serum triglycerides levels and a complete inhibition of body weight gain without affecting feed consumption. A significant reduction in the serum biomarkers like Plasminogen activator inhibitor-1 (PAI-1), interleukin 6 (IL-6) and Fetuin-A with CNX-010-49 treatment was observed indicating a potential to modulate processes implicated in cardiovascular benefits.ConclusionsThese results indicate that inhibition of 11β-HSD1 with CNX-010-49 can give a potential benefit in the management of metabolic dysregulations that are seen in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.