Background and purpose of the studyAngiotensin converting enzyme (ACE) inhibitors plays a critical role in treating hypertension. The purpose of the present investigation was to evaluate ACE inhibition activity of 50 Iranian medicinal plants using an in vitro assay.MethodsThe ACE activity was evaluated by determining the hydrolysis rate of substrate, hippuryl-L-histidyl-L-leucine (HHL), using reverse phase high performance liquid chromatography (RP-HPLC). Total phenolic content and antioxidant activity were determined by Folin-Ciocalteu colorimetric method and DPPH radical scavenging assay respectively.ResultsSix extracts revealed > 50% ACE inhibition activity at 330 μg/ml concentration. They were Berberis integerrima Bunge. (Berberidaceae) (88.2 ± 1.7%), Crataegus microphylla C. Koch (Rosaceae) (80.9 ± 1.3%), Nymphaea alba L. (Nymphaeaceae) (66.3 ± 1.2%), Onopordon acanthium L. (Asteraceae) (80.2 ± 2.0%), Quercus infectoria G. Olivier. (Fagaceae) (93.9 ± 2.5%) and Rubus sp. (Rosaceae) (51.3 ± 1.0%). Q. infectoria possessed the highest total phenolic content with 7410 ± 101 mg gallic acid/100 g dry plant. Antioxidant activity of Q. infectoria (IC50 value 1.7 ± 0.03 μg/ml) was more than that of BHT (IC50 value of 10.3 ± 0.15 μg/ml) and Trolox (IC50 value of 3.2 ± 0.06 μg/ml) as the positive controls.ConclusionsIn this study, we introduced six medicinal plants with ACE inhibition activity. Despite the high ACE inhibition and antioxidant activity of Q. infectoria, due to its tannin content (tannins interfere in ACE activity), another plant, O. acanthium, which also had high ACE inhibition and antioxidant activity, but contained no tannin, could be utilized in further studies for isolation of active compounds.
SN1 and SN2-like alkylation reactions of ketone enolates with sp3-based electrophiles are essential transformations for generating α-substituted ketone products. However, alkylation reactions of weakly nucleophilic α,α-difluoroketone enolates with sp3-hybridized electrophiles remain nearly unexplored, even for activated benzylic electrophiles. To generate the key C(α)–C(sp3) bond, we report a Pd-catalyzed decarboxylative benzylation reaction of α,α-difluoroketone enolates, in which this bond is generated by reductive elimination from a Pd(II) intermediate. The transformation provides convergent access to α-benzyl-α,α-difluoroketone-based products, and should be useful for accessing biological probes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.