Cloud computing delivers services through the Internet and enables the deployment of a diversity of apps to provide services to many businesses. At present, the low scalability of these cloud frameworks is their primary obstacle. As a result, they are unable to satisfy the demands of centralized computer systems, which are based on the Internet of Things (IoT). Applications such as disease surveillance and tracking and monitoring systems, which are highly latency sensitive, demand the computation of the Big Data communicated to centralized databases and from databases to cloud data centers, resulting in system performance loss. Recent concepts, such as fog and edge computing, offer novel approaches to data processing by relocating the processing power and other resources closer to the end user, thereby reducing latency and maximizing energy efficiency. Existing fog models, on the other hand, have a number of limitations and tend to prioritize either the precision of their findings or a faster response time, but not both. For the purpose of applying a healthcare solution in the real world, we developed and implemented a one-of-a-kind architecture that integrates quartet deep learning with edge computing devices. The paradigm that has been developed delivers health management as a fog service through the Internet of Things (IoT) devices and efficiently organizes the data from patients based on the requirements of the user. FogBus, a fog-enabled cloud framework, is used to measure the effectiveness of the proposed structure in regards to resource usage, network throughput, congestion, precision, and runtime. To maximize the QoS or forecast the accuracy in different fog computing settings and for different user requirements, the suggested technique can be set up to run in a number of different modes.
The wide use of internet-enabled devices has not left the healthcare sector untouched. The health status of each individual is being monitored irrespective of his/her medical conditions. The advent of such medical devices is beneficial not only for patients but also for physicians, hospitals, and insurance companies. It makes healthcare fast, reliable, and hassle-free. People can keep an eye on their blood pressure, pulse rate, etc., and thus take preventive measures on their own. In hospitals, too, the Internet of Things (IoT) is being deployed for various tasks such as monitoring oxygen and blood sugar levels, electrocardiograms (ECGs), etc. The IoT in healthcare also reduces the cost of various ailments through fast and rigorous data analysis. The prediction of diseases through machine-learning techniques based on symptoms has become a promising concept. There may also be a situation where real-time analysis is required. In such a latency-sensitive situation, fog computing plays a vital role. Establishing communication every time with the cloud is not required with the introduction of fog and thus the latency is reduced. Healthcare is a latency-sensitive application area. So, the deployment of fog computing in this area is of vital importance. Our work focuses on improving the efficiency of the system for the precise diagnosis of and recommendations for heart disease. It evaluates the system using a machine-learning module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.