We report a technique for quantitative three-dimensional (3D) mapping of refractive index in live cells and tissues using a phase-shifting laser interferometric microscope with variable illumination angle. We demonstrate tomographic imaging of cells and multicellular organisms, and time-dependent changes in cell structure. Our results will permit quantitative characterization of specimen-induced aberrations in high-resolution microscopy and have multiple applications in tissue light scattering.
Using novel interferometric quantitative phase microscopy methods, we demonstrate that the surface integral of the optical phase associated with live cells is invariant to cell water content. Thus, we provide an entirely noninvasive method to measure the nonaqueous content or "dry mass" of living cells. Given the extremely high stability of the interferometric microscope and the femtogram sensitivity of the method to changes in cellular dry mass, this new technique is not only ideal for quantifying cell growth but also reveals spatially resolved cellular and subcellular dynamics of living cells over many decades in a temporal scale. Specifically, we present quantitative histograms of individual cell mass characterizing the hypertrophic effect of high glucose in a mesangial cell model. In addition, we show that in an epithelial cell model observed for long periods of time, the mean squared displacement data reveal specific information about cellular and subcellular dynamics at various characteristic length and time scales. Overall, this study shows that interferometeric quantitative phase microscopy represents a noninvasive optical assay for monitoring cell growth, characterizing cellular motility, and investigating the subcellular motions of living cells. phase microscopy; interferometric microscopy; cell growth PHASE-CONTRAST (PC) and differential interference contrast (DIC) microscopy have been used extensively to study live cells without the need for exogenous contrast agents (32). The tremendous success of these methods is due to the fact that the optical phase shift through a given sample contains information about the refractive index (n) variations that directly result from structural features within the sample. Refractive index n can therefore be regarded as a powerful endogenous contrast agent for cellular structure (6). However, as the relationship between the irradiance and phase of the image field is generally nonlinear (30, 39), both PC and DIC are qualitative in nature and limited to morphological observations without specific structural data.Quantitative phase microscopy has received substantial interest in recent years, as quantifying optical phase shifts associated with cells provides structural and dynamical information at the nanometer scale without the need for any cell preparation or the use of exogenous contrast or labels. Existing methods for biological quantitative phase measurements can be divided into single-point and full-field techniques. Several point measurement techniques have been used for investigating the local structure and dynamics of live cells (1,7,10,14,29,36,37). In contrast, full-field phase measurement techniques provide simultaneous information from a large region of the sample, which offers the additional benefit of studying both the temporal and spatial behavior of the sample (2, 5, 9, 13, 18 -20, 40, 41).Over the past several years, our laboratory has developed new full-field phase imaging techniques that are suitable for spatially resolved investigation of live cell...
No abstract
Using Hilbert phase microscopy for extracting quantitative phase images, we measured the average refractive index associated with live cells in culture. To decouple the contributions to the phase signal from the cell refractive index and thickness, we confined the cells in microchannels. The results are confirmed by comparison with measurements of spherical cells in suspension.
Refractive index imaging is a label-free technique that enables long-term monitoring of the internal structures and molecular composition in living cells with minimal perturbation. Existing tomographic methods for the refractive index imaging lack 3-D resolution and result in artifacts that prevent accurate refractive index quantification. To overcome these limitations without compromising the capability to observe a sample in its most native condition, we have developed a regularized tomographic phase microscope (RTPM) enabling accurate refractive index imaging of organelles inside intact cells. With the enhanced accuracy, we quantify the mass of chromosomes in intact living cells, and differentiate two human colon cancer lines, HT-29 and T84 cells, solely based on the non-aqueous (dry) mass of chromosomes. In addition, we demonstrate chromosomal imaging using a dual-wavelength RTPM, which shows its potential to determine the molecular composition of cellular organelles in live cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.