In Jordan, ~61% of total residential energy consumption is consumed by heating spaces using portable kerosene (K) and liquified petroleum gas (LPG) heaters. Here, we evaluated the indoor air quality (IAQ) versus the use of K and LPG heaters inside a test room reflecting the typical conditions of Jordanian dwellings during the winter season. The experimental setup included particle size distribution (diameter 0.01–25 µm) measurements, and we utilized a simple sectional indoor aerosol model (SIAM) to estimate the emission rate and lifetime of the combustion products in the test room. The particle number (PN) concentration during the LPG operation was 6 × 104–5.9 × 105 cm−3, depending on the setting at minimum, medium, or maximum. The K heater operation increased with the PN concentrations to a range of 4 × 105–8 × 105 cm−3. On average, the particle losses were 0.7–1.6 h−1 for micron particles (1–10 µm) and 0.8–0.9 h−1 for ultrafine particles (<0.1 µm). The emission rate from the LPG heater was 1.2 × 1010–2.8 × 1010 particles/s (6.6 × 106–8.0 × 106 particles/J), and that for the K heater was about 4.4 × 1010 particles/s (1.9 × 107 particles/J). The results call for the immediate need to apply interventions to improve the IAQ by turning to cleaner heating processes indoors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.