The low microbial flocculant yields and efficiencies limit their industrial applications. There is a need to identify bacteria with high bioflocculant production. The aim of this study was to isolate and identify a bioflocculant-producing bacterium from activated sludge wastewater and characterise its bioflocculant activity. The identification of the isolated bacterium was performed by 16S rRNA gene sequencing analysis. The optimal medium composition (carbon and nitrogen sources, cations and inoculum size) and culture conditions (temperature, pH, shaking speed and time) were evaluated by the one-factor-at-a-time method. The morphology, functional groups, crystallinity and pyrolysis profile of the bioflocculant were analysed using scanning electron microscope (SEM), Fourier transform infrared (FTIR) and thermogravimetric (TGA) analysis. The bacterium was identified as Proteus mirabilis AB 932526.1. Its optimal medium and culture conditions were: sucrose (20 g/L), yeast extract (1.2 g/L), MnCl2 (1 g/L), pH 6, 30 °C, inoculation volume (3%), shaking speed (120 rpm) for 72 h of cultivation. SEM micrograph revealed the bioflocculant to be amorphous. FTIR analysis indicated the presence of hydroxyl, carboxyl and amino groups. The bioflocculant was completely pyrolyzed at temperatures above 800 °C. The bacterium has potential to produce bioflocculant of industrial importance.
Microbial flocculants affect the aggregation of suspended solutes in solutions, thus, they are a viable alternative to inorganic and organic synthetic flocculants which are associated with deleterious health problems. Moreover, a potential solution for wastewater treatment. The study aimed to produce and characterize a bioflocculant from Proteus mirabilis AB 932526.1 and apply it in domestic wastewater treatment and dye removal. The bioflocculant was extracted using butanol and chloroform (5:2 v/v). Carbohydrates, proteins, and uronic acid were identified using phenol-sulphuric acid, Bradford, and Carbazole essays. The morphology, crystallinity and elemental composition of the purified bioflocculant were determined using a Scanning electron microscope (SEM), X-ray diffraction analysis and SEM energy dispersive elemental detector (SEM-EDX). The antimicrobial properties and dye removal efficiencies were evaluated. About 3.8 g/L yields of the purified bioflocculant were attained. Chemical composition analysis revealed the presence of 65 % carbohydrates, 10 % proteins, and 24 % uronic acids. The bioflocculant displayed an amorphous and crystalline structure. Bioflocculant further shows some remarkable properties as they can be able to inhibit the growth of both Gram-positive and Gram-negative microorganisms. The removal efficiencies of 85 % (COD), 82 % (BOD), and 81 % (SO4 2−) in domestic wastewater were achieved. Moreover, the high removal efficiency of staining dyes such as methylene blue (71 %), carbol fuchsin (81 %), safranin (83 %), methylene orange (90 %), and Congo red (90 %) were found. The produced bioflocculant can imply industrial applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.