The role of mathematical models in controlling infectious diseases cannot be overemphasized. COVID-19 is a viral disease that is caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) which has no approved vaccine. The available control measures are non-pharmacological interventions like wearing face masks, social distancing, and lockdown which are being advocated for by the WHO. This work assesses the impact of non-pharmaceutical control measures (social distancing and use of face-masks) and mass testing on the spread of COVID-19 in Nigeria. A community-based transmission model for COVID-19 in Nigeria is formulated with observing social distancing, wearing face masks in public and mass testing. The model is parameterized using Nigeria data on COVID-19 in Nigeria. The basic reproduction number is found to be less than unity( R_0<1) when the compliance with intervention measures is moderate (50%≤α<70%) and the testing rate per day is moderate (0.5≤σ_2<0.7) or when the compliance with intervention measures is strict (α≥70%) and the testing rate per day is poor (σ_2=0.3). This implies that Nigeria will be able to halt the spread of COVID-19 under these two conditions. However, it will be easier to enforce strict compliance with intervention measures in the presence of poor testing rate due to the limited availability of testing facilities and manpower in Nigeria. Hence, this study advocates that Nigerian governments (Federal and States) should aim at achieving a testing rate of at least 0.3 per day while ensuring that all the citizens strictly comply with wearing face masks and observing social distancing in public.
COVID-19 is a viral disease that is caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARSCoV-2) which has no approved vaccine. Based on the available non-pharmacological interventions like wearing of face masks, observing social distancing, and lockdown, this work assesses the impact of non-pharmaceutical control measures (social distancing and use of face-masks) and mass testing on the transmission of COVID-19 in Nigeria. A mathematical model for COVID-19 is formulated with intervention measures (observing social distancing and wearing of face masks) and mass testing. The basic reproduction number, R_0, is computed using next-generation method while the disease-free equilibrium is found to be locally and globally asymptotically stable when R_0< 1. The model is parameterized using Nigeria data on COVID-19 in Nigeria. The basic reproduction number is found to be less than unity (R_0 < 1) either when the compliance with intervention measures is moderate (50% <= alpha< 70%) and the testing rate per day is moderate (0,5 <=alpha_2 < 0,7) or when the compliance with intervention measures is strict (alpha>=70%) and the testing rate per day is poor (alpha_2 = 0,3). This implies that Nigeria will be able to halt the spread of COVID-19 under these two conditions. However, it will be easier to enforce strict compliance with intervention measures in the presence of poor testing rate due to the limited availability of testing facilities and manpower in Nigeria. Hence, this study advocates that Nigerian governments (Federal and States) should aim at achieving a testing rate of at least 0.3 per day while ensuring that all the citizens strictly comply with wearing face masks and observing social distancing in public.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.