DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
The reliability of metallic micro-electromechanical systems (MEMS) depends on time-dependent deformation such as creep. To this end, a purely mechanical experimental methodology for studying the time-dependent deformation of free-standing microbeams has been developed. It is found most suitable for the investigation of creep due to the simplicity of sample handling and preparation and setup design, whilst maximizing long term stability and displacement resolution. The methodology entails the application of a constant deflection to a μm-sized free-standing aluminum cantilever beam for a prolonged period of time. After this load is removed, the deformation evolution is immediately recorded by acquiring surface height profiles through confocal optical profilometry. Image correlation and an algorithm based on elastic beam theory are applied to the full-field beam profiles to yield the tip deflection as a function of time. The methodology yields the tip deflection as function of time with ~3 nm precision.
SummaryReliability of microelectromechanical systems (MEMS) depends a.o. on time-dependent deformation such as creep and fatigue [1]. It is known from literature that this behavior is affected by size-effects: the interaction between microstructural length scales and dimensional length scales [2,3]. Not much research has focused on characterizing size-effects in time-dependent material behavior, specifically for free-standing thin films [3]. This study investigates size-effects caused by grain statistics in timedependent deformation in µm-sized free-standing aluminum cantilever beams.A numeric-experimental method is used to determine material parameters. The experiment entails applying a constant deflection to the micro-beams for a prolonged period. The deflection is achieved with 50 nm resolution via a micro-clamp. The beams are then released. Immediately the deformation evolution is recorded by acquiring surface height profiles with a confocal optical profiler. Image correlation of the full-field beam profiles is applied to correct for specimen drift and tilt. The experiment yields the tip deflection as function of time with ∼3 nm precision. In the numerical part, this data is combined with a finite element model based on a standard-solid material model. In this way material parameters describing time-dependent behavior are extracted. The time constant for the deflection evolution is determined within 20%, as verified by predicting a different experiment. Figure 1 shows the model and the numeric prediction of an experiment.To investigate the size-effects of grain statistics, orientation imaging microscopy (OIM) is employed directly on the free-standing cantilevers, see figure 2. This work correlates the obtained timedependent material parameters to the actual grain sizes, grain boundary length and texture orientation per specimen. Insights into the interplay between micro-mechanism and grain characteristic and the effect on the time-dependent material behavior are presented.
SummaryExperiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS) pose challenges: e.g. fabrication and handling (sub)-µm sized specimens, control and measurement of sub-µN loads and sub-µm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at µN and sub-µm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties.First a numeric-experimental method is developed. It characterizes bending deformation of onwafer µm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (z res <50 nm) for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP). This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material parameters describing the time-dependent behavior, the experiments are simulated with FEM using a standardsolid material model and the exact test-structure geometry.Although this method is simple, yet precise, it lacks direct determination of stress and strain. Therefore a second method is designed: measuring time-dependent tensile behavior of these cantilevers with a custom nano-tensile stage. The wafer with specimen is fixed to and manipulated with nano-precision by piezos stacked on micro-manipulators. The piezos also serve as load actuators. The stage has a custom multirange load cell providing a load range of 0-100 mN at a minimum resolution of 10 nN. An electro-static force is generated between the top flat of the specimen's free end and a mating flat on the load cell. Full-field displacement measurements through a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.