Globally, the prevailing COVID-19 pandemic has caused unprecedented clinical and public health concerns with increasing morbidity and mortality. Unfortunately, the burden of COVID-19 in Africa has been further exacerbated by the simultaneous epidemics of Ebola virus disease (EVD) and Lassa Fever (LF) which has created a huge burden on African healthcare systems. As Africa struggles to contain the spread of the second (and third) waves of the COVID-19 pandemic, the number of reported cases of LF is also increasing, and recently, new outbreaks of EVD. Before the pandemic, many of Africa’s frail healthcare systems were already overburdened due to resource limitations in staffing and infrastructure, and also, multiple endemic tropical diseases. However, the shared epidemiological and pathophysiological features of COVID-19, EVD and LF as well their simultaneous occurrence in Africa may result in misdiagnosis at the onset of infection, an increased possibility of co-infection, and rapid and silent community spread of the virus(es). Other challenges include high population mobility across porous borders, risk of human-to-animal transmission and reverse zoonotic spread, and other public health concerns. This review highlights some major clinical and public health challenges toward responses to the COVID-19 pandemic amidst the deuce-ace of recurrent LF and EVD epidemics in Africa. Applying the One Health approach in infectious disease surveillance and preparedness is essential in mitigating emerging and re-emerging (co-)epidemics in Africa and beyond.
This paper reviews plants and microorganisms removal of heavy metals from contaminated sites through bioaccumulation. Increased industrial activities have led to the uncontrolled release of metals into the environment, resulting in a global increase in metal pollution. Heavy metals are also consumed from the surface of glasses over a prolonged period of use. Heavy metal pollution is a serious problem that can have wide-ranging and long-lasting impacts on human health and the environment. Therefore, effective removal and remediation of heavy metal pollution are crucial to protect human and ecological health. Traditional methods of heavy metal removal, such as chemical treatment and physical removal, can be costly and can also have negative impacts on the environment. The utilization of plants and microorganisms for bioremediation of metal-polluted environments has proven effective for removing metals through accumulation and/or detoxification. This method is effective, economical, versatile, and environmentally friendly. Bioaccumulation utilizes plants and microorganisms to absorb and remove heavy metals from contaminated sites. This method is not only cost-effective but also helps to minimize the environmental impact of heavy metal pollution. Additionally, bioaccumulation can be used in combination with other techniques, such as phytostabilization and phytodegradation, to further improve the efficiency of heavy metal removal. The paper also discusses the use of plants and microorganisms in the removal of heavy metals from water and soil through biomagnification and bioconcentration. Techniques such as phytoaccumulation, phytostimulation, phytodegradation, phytovolatilization, phytostabilization, and phytofiltration are also discussed as effective ways of remediation of heavy metal contaminated sites.
Bioremediation employing the action of microbes alone has been shown to be inadequate. The aim of this study was to evaluate the efficacy of sewage sludge (SS) in enhancing bioremediation of diesel oil-polluted soil. Diesel oil was introduced into the soil at the concentration of 10 % (v/w) and mixed with 5%, 10% and 15% (w/w) of sewage sludge. The remediation of the oil was determined gravimetrically using n-hexane as extractant. Effectiveness of the remediation strategy was assessed by the seed germination toxicity test. At the end of forty-two days, 32.22 % oil loss was recorded in the unamended polluted soil while 58.33% oil loss was recorded in the soil amended with sewage sludge. Hydrocarbon-utilizing bacteria (HUB) counts were significantly higher (P≤0.05) in the sewage sludgeamended options, ranging from 5.3 ±0.9 x 10 6 to 12.3±0.75 × 10 6 CFU/g soil, as compared to the unamended control soil which gave 1.0 × 10 6 -3.8 × 10 6 CFU/g of soil. The hydrocarbon-utilizing bacteria isolated from both the control and amended soils were identified tentatively as Bacillus cereus, Pseudomonas putida, Micrococcus varians, Corynebacterium sp, Acinetobacter sp and Bacillus licheniformis based on their cultural, morphological and biochemical characteristics. The fungal counts in the SS-amendment options were also higher than was recorded in the control option ranging from 3.8x 10 5 ± 0.2 to 11.6x 10 5 ±0.25.Aerobic fungi isolated were Aspergillus niger, Aspergillus flavus, Fusarium sp, Cladosporium sp and Penicillium sp. The highest oil loss and germination indices were recorded in SS-amended options. There was a significant difference (P≤0.05) in oil loss and germination index between the unamended control soil and amended soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.