The hormone ethylene influences plant growth, development, and some defense responses. The fungal elicitor Ethylene-Inducing Xylanase (EIX) elicits ethylene biosynthesis in tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum) leaves by induction of 1-aminocyclopropane-1-caboxylic acid synthase (Acs) gene expression. A minimal promoter element in the LeAcs2 gene required for EIX responsiveness was defined by deletion analysis in transgenic tomato plants. The sequence between −715 and −675 of the tomato Acs2 gene was found to be essential for induction by EIX. A Cys protease (LeCp) was isolated that specifically binds to this cis element in vitro. Ectopic expression of LeCp in tomato leaves induced the expression of Acs2. Moreover, chromatin immunoprecipitation showed that LeCp binds in vivo to the Acs promoter. We propose a mechanism for the dual function of the LeCp protein. The protease acts enzymatically in the cytoplasm. Then, upon signaling, a small ubiquitin-related modifier protein binds to it, enabling entrance into the nucleus, where it acts as a transcription factor. Thus, LeCp can be considered a dual-function protein, having enzymatic activity and, upon elicitor signaling, exhibiting transcriptional factor activity that induces LeAcs2 expression.
We found no evidence that MSR1 and PTEN germline mutations are associated with prostate cancer risk in Jews. The negative association between KLF6 IVS1-27A and prostate cancer risk supports a population-specific effect of susceptibility alleles in prostate tumorigenesis.
Overexpression of the centrosome-associated serine/threonine kinase Aurora Kinase A (AURKA) has been demonstrated in both advanced prostate cancer and high-grade prostatic intraepithelial neoplasia lesions. The single-nucleotide polymorphism T91A (Phe31Ile) has been implicated in AURKA overexpression and has been suggested as a low-penetrance susceptibility allele in multiple human cancers, including prostate cancer. We studied the transcriptional consequences of the AURKA Ile31 allele in 28 commercial normal prostate tissue RNA samples (median age, 27 years). Significant overexpression of AURKA was demonstrated in homozygous and heterozygous AURKA Ile31 prostate RNA (2.07-fold and 1.93-fold, respectively; P < .05). Expression levels of 1509 genes differentiated between samples homozygous for Phe31 alleles and samples homozygous for Ile31 alleles (P = .05). Gene Ontology classification revealed overrepresentation of cell cycle arrest, ubiquitin cycle, antiapoptosis, and angiogenesis-related genes. When these hypothesis-generating results were subjected to more stringent statistical criteria, overexpression of a novel transcript of the natural killer tumor recognition sequence (NKTR) gene was revealed and validated in homozygous Ile31 samples (2.6-fold; P < .05). In summary, our data suggest an association between the AURKA Ile31 allele and an altered transcriptome in normal non-neoplastic prostates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.