NK cell cytotoxicity is controlled by numerous NK inhibitory and activating receptors. Most of the inhibitory receptors bind MHC class I proteins and are expressed in a variegated fashion. It was recently shown that TIGIT, a new protein expressed by T and NK cells binds to PVR and PVR-like receptors and inhibits T cell activity indirectly through the manipulation of DC activity. Here, we show that TIGIT is expressed by all human NK cells, that it binds PVR and PVRL2 but not PVRL3 and that it inhibits NK cytotoxicity directly through its ITIM. Finally, we show that TIGIT counter inhibits the NK-mediated killing of tumor cells and protects normal cells from NK-mediated cytoxicity thus providing an ''alternative self'' mechanism for MHC class I inhibition.inhibitory receptors ͉ natural killers I n contrast to T cells, that possess a single dominant antigen receptor (1), NK cells rely on a vast combinatorial array of receptors to initiate effector functions (2). Both activating and inhibitory receptors expressed on NK cells regulate their activity when interacting with tumors, virus infected cells and bacteria, as well as normal self-cells (2). MHC class I-expressing cells are protected from NK-mediated lysis due to the recognition of various MHC class I proteins by the inhibitory receptors KIR, LIR and CD94-NKG2A (3). Other NK inhibitory receptors which do not interact with MHC class I also exist, such as CEACAM1 and IRp60 (4-8). The significance, however, of these non-MHC class I inhibitory receptors in normal conditions is still unclear. All of the inhibitory receptors share a common immune receptor tyrosinebased inhibitory motif (ITIM) in their cytoplasmic regions, which delivers the inhibitory signal (3).The NK cell-mediated killing is extracted by specific receptors, among which are the natural cytotoxicity receptors (NCRs), which include the NKp30 that interacts with pp65 of human cytomegalovirus (CMV), BAT3 and the recently identified B7-family member B7-H6 (9-11), and the NKp46/NKp44 receptors, which interact with various viral hemagglutinins (12, 13). The NKG2D receptor interacts with MICA, MICB and ULBP 1-5 (14) and NKp80 interacts with AICL (15). In addition, two other receptors, DNAM-1 and CD96, enhance NK cytotoxicity (16,17). Both DNAM-1 and CD96 recognize PVR (CD155), whereas DNAM-1 also recognizes PVRL2 (CD112) (16,17). It was recently shown that a new receptor, named TIGIT, for T cell Ig and ITIM domain, interacts with PVR and its related proteins and that TIGIT inhibits T cell activity indirectly through the manipulation of DC activity (18). Here, we show that TIGIT, through its ITIM, can directly inhibit NK cytotoxicity. ResultsTIGIT Inhibits YTS Killing Through Its ITIM Motif. While searching for new CD28 family-like receptors, based on bioinformatics analysis, we observed that a protein named VSIG9 or VSTM3 in the databases expresses an ITIM motif. We continued to work on this protein and found that it interacts with PVR (CD155) but not with any other NK ligands tested (supporting information (...
MICA and MICB are stress-induced ligands recognized by the activating receptor NKG2D. A microRNA encoded by human cytomegalovirus downregulates MICB expression by targeting a specific site in the MICB 3' untranslated region. As this site is conserved among different MICB alleles and a similar site exists in the MICA 3' untranslated region, we speculated that these sites are targeted by cellular microRNAs. Here we identified microRNAs that bound to these MICA and MICB 3' untranslated region sequences and obtained data suggesting that these microRNAs maintain expression of MICA and MICB protein under a certain threshold and facilitate acute upregulation of MICA and MICB during cellular stress. These microRNAs were overexpressed in various tumors and we demonstrate here that they aided tumor avoidance of immune recognition.
The activity of natural killer (NK) cells is controlled by a balance of signals derived from inhibitory and activating receptors. TIGIT is a novel inhibitory receptor, recently shown in humans to interact with two ligands: PVR and Nectin2 and to inhibit human NK-cell cytotoxicity. Whether mouse TIGIT (mTIGIT) inhibits mouse NK-cell cytotoxicity is unknown. Here we show that mTIGIT is expressed by mouse NK cells and interacts with mouse PVR. Using mouse and human Ig fusion proteins we show that while the human TIGIT (hTIGIT) cross-reacts with mouse PVR (mPVR), the binding of mTIGIT is restricted to mPVR. We further demonstrate using surface plasmon resonance (SPR) and staining with Ig fusion proteins that mTIGIT binds to mPVR with higher affinity than the co-stimulatory PVR-binding receptor mouse DNAM1 (mDNAM1). Functionally, we show that triggering of mTIGIT leads to the inhibition of NK-cell cytotoxicity, that IFN-γ secretion is enhanced when mTIGIT is blocked and that the TIGIT-mediated inhibition is dominant over the signals delivered by the PVR-binding co-stimulatory receptors. Additionally, we identify the inhibitory motif responsible for mTIGIT inhibition. In conclusion, we show that TIGIT is a powerful inhibitory receptor for mouse NK cells.
NK cells employ a variety of activating receptors to kill virally infected and tumor cells. Prominent among these receptors are the natural cytotoxicity receptors (NCRs) (NKp30, NKp44, and NKp46), of which only NKp46 has a mouse ortholog (NCR1). The tumor ligand(s) of NKp46/NCR1 is still unknown, but it was shown that the human NKp46 and the mouse NCR1 are involved in tumor eradication both in vitro and in vivo. Whether any of the NK activating receptors is involved in the prevention of tumor metastasis is unknown. To address this question, we studied the activity of the NK cell receptor NKp46/NCR1 in two spontaneous metastasis models, the B16F10.9 melanoma (B16) and the Lewis lung carcinoma (D122) in the NCR1 knockout mouse that was generated by our group, in various in vitro and in vivo assays. We demonstrated that all B16 and D122 tumors, including those generated in vivo, express an unknown ligand(s) for NKp46/NCR1. We have characterized the properties of the NKp46/NCR1 ligand(s) and demonstrated that NKp46/NCR1 is directly involved in the killing of B16 and D122 cells. Importantly, we showed in vivo that NKp46/NCR1 plays an important role in controlling B16 and D122 metastasis. Thus, to our knowledge, in this study we provide the first evidence for the direct involvement of a specific NK killer receptor in preventing tumor metastasis.
a b s t r a c tHuman natural killer (NK) cells possess an arsenal of receptors programmed to regulate the NK cell functions, once encountering a target cell. In general, the activating receptors mediate cytotoxicity when engaged by their tumor specific, stress induced, virally encoded, or rarely, self ligands. Whereas, the inhibitory receptors bind self molecules, mostly MHC class I, presented on all normal and healthy nucleated cells. However, NK cells also possess numerous, highly homologous, pairs of receptors that sometimes even share the same ligands but display divergent functions. In this review we describe the NK cell repertoire of paired receptors and discuss questions regarding their function and mode of action. We focus primarily on the three PVR-binding receptors; the co-stimulatory DNAM1 and CD96 and the inhibitory TIGIT. Ó 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Paired inhibitory and activating NK cell receptorsNK cells, which belong to the innate immune system, are able to quickly kill virally infected and malignant cells. The complicated repertoire of activating and inhibitory receptors that regulate NK activity helps to ensure that NK cells would be able to efficiently kill invading pathogens but not normal self cells [1]. The differences in the function of the inhibitory and activating NK cell receptors are reflected by the different ligands recognized by the various receptors. While the activating NK cell receptors recognize pathogen-derived, stress-induced, tumor specific and surprisingly sometimes even self ligands, the inhibitory receptors, in general, recognize self proteins, mainly MHC class I [2]. The differences in the inhibitory and activating ligands repertoire probably exist to guarantee the discrimination between self and non-self. Therefore, it was surprising to discover the existence of pairs of highly homologous proteins that in some cases even share the same ligands, but display divergent functions (Table 1). In this review we discuss the properties of the various members of the human paired NK receptors and mainly focus on reviewing the activity of the PVR-binding receptors in an attempt to better understand the biological function of the paired receptors. Paired receptors: MHC class I binding proteinsMost of the paired receptors belong to the killer cell immunoglobulin-like receptors (KIR) family. This family includes inhibitory receptors with a long intra cytoplasmic domain containing a variable number of immunoreceptor tyrosine-based inhibitory motifs (ITIM), and activating or co-activating receptors, with a nearly identical extracellular region containing shorter intra cytoplasmic domain which lacks ITIMs (Table 1). These short killer activating receptors (KAR) also display a unique transmembrane sequence, which contains a charged amino acid that interacts with an activating adaptor molecule [3].The ligands of most of the KARs are unknown (Table 1) and most of the known KAR ligands are MHC class I proteins which are...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.