In coming to understand the world-in learning concepts, acquiring language, and grasping causal relations-our minds make inferences that appear to go far beyond the data available. How do we do it? This review describes recent approaches to reverse-engineering human learning and cognitive development and, in parallel, engineering more humanlike machine learning systems. Computational models that perform probabilistic inference over hierarchies of flexibly structured representations can address some of the deepest questions about the nature and origins of human thought: How does abstract knowledge guide learning and reasoning from sparse data? What forms does our knowledge take, across different domains and tasks? And how is that abstract knowledge itself acquired?
Online abstract. One of the most astonishing features of human language is its capacity to convey information efficiently in context. Many theories provide informal accounts of communicative inference, yet there have been few successes in making precise, quantitative predictions about pragmatic reasoning. We examine judgments about simple referential communication games, modeling behavior in these games by assuming that speakers attempt to be informative, and that listeners use Bayesian inference to recover speakers' intended referents. Our model provides a close, parameter-free fit to human judgments, suggesting that using information-theoretic tools to predict pragmatic reasoning may lead to more effective formal models of communication.One of the most astonishing features of human language is its ability to convey information efficiently in context. Each utterance need not carry every detail; instead, listeners can infer speakers' intended meanings by assuming utterances convey only relevant information. These communicative inferences rely on the shared assumption that speakers are informative, but not more so than is necessary given the communicators' common knowledge and the task at hand. Many theories provide high-level accounts of these kinds of inferences (1-3), yet-perhaps be-1
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles (e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities, and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Motivated by computational analyses, we look at how teaching affects exploration and discovery. In Experiment 1, we investigated children’s exploratory play after an adult pedagogically demonstrated a function of a toy, after an interrupted pedagogical demonstration, after a naïve adult demonstrated the function, and at baseline. Preschoolers in the pedagogical condition focused almost exclusively on the target function; by contrast, children in the other conditions explored broadly. In Experiment 2, we show that children restrict their exploration both after direct instruction to themselves and after overhearing direct instruction given to another child; they do not show this constraint after observing direct instruction given to an adult or after observing a non-pedagogical intentional action. We discuss these findings as the result of rational inductive biases. In pedagogical contexts, a teacher’s failure to provide evidence for additional functions provides evidence for their absence; such contexts generalize from child to child (because children are likely to have comparable states of knowledge) but not from adult to child. Thus, pedagogy promotes efficient learning but at a cost: children are less likely to perform potentially irrelevant actions but also less likely to discover novel information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.