Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre-including this research content-immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
We show that individuals with documented history of seasonal coronavirus have a similar SARS-CoV-2 infection rate and COVID-19 severity as those with no prior history of seasonal coronavirus. Our findings suggest prior infection with seasonal coronavirus does not provide immunity to subsequent infection with SARS-CoV-2.
AbstractObjectiveThe development of predictive models for clinical application requires the availability of electronic health record (EHR) data, which is complicated by patient privacy concerns. We showcase the “Model to Data” (MTD) approach as a new mechanism to make private clinical data available for the development of predictive models. Under this framework, we eliminate researchers’ direct interaction with patient data by delivering containerized models to the EHR data.Materials and MethodsWe operationalize the MTD framework using the Synapse collaboration platform and an on-premises secure computing environment at the University of Washington hosting EHR data. Containerized mortality prediction models developed by a model developer, were delivered to the University of Washington via Synapse, where the models were trained and evaluated. Model performance metrics were returned to the model developer.ResultsThe model developer was able to develop 3 mortality prediction models under the MTD framework using simple demographic features (area under the receiver-operating characteristic curve [AUROC], 0.693), demographics and 5 common chronic diseases (AUROC, 0.861), and the 1000 most common features from the EHR’s condition/procedure/drug domains (AUROC, 0.921).DiscussionWe demonstrate the feasibility of the MTD framework to facilitate the development of predictive models on private EHR data, enabled by common data models and containerization software. We identify challenges that both the model developer and the health system information technology group encountered and propose future efforts to improve implementation.ConclusionsThe MTD framework lowers the barrier of access to EHR data and can accelerate the development and evaluation of clinical prediction models.
Beginning in the early 2010s, an array of Value-Based Purchasing (VBP) programs has been developed in the United States (U.S.) to contain costs and improve health care quality. Despite documented successes in these efforts in some instances, there have been growing concerns about the programs' unintended consequences for health care disparities due to their built-in biases against health care organizations that serve a disproportionate share of disadvantaged patient populations. We explore the effects of three Medicare hospital VBP programs on health and health care disparities in the U.S. by reviewing their designs, implementation history, and evidence on health care disparities. The available empirical evidence thus far suggests varied impacts of hospital VBP programs on health care disparities. Most of the reviewed studies in this paper demonstrate that hospital VBP programs have the tendency to exacerbate health care disparities, while a few others found evidence of little or no worsening impacts on disparities. We discuss several policy options and recommendations which include various reform approaches and specific programs ranging from those addressing upstream structural barriers to health care access, to health care delivery strategies that target service utilization and health outcomes of vulnerable populations under the VBP programs. Future studies are needed to produce more explicit, conclusive, and consistent evidence on the impacts of hospital VBP programs on disparities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.