We describe an experiment for generating and characterizing a beam of collimated blue light (CBL) in a rubidium vapor. Two low-power, grating-feedback diode lasers, operating at 780.2 nm (5S1/2→5P3/2) and 776.0 nm (5P3/2→5D5/2), respectively, provide step-wise excitation to the 5D excited state in rubidium. Under the right experimental conditions, cascade decay through the 6P excited state will yield a collimated blue (420-nm) beam of light with high temporal and spatial coherence. We investigate the production of a blue beam under a variety of experimental conditions and characterize the spatial coherence and spectral characteristics. This experiment provides advanced undergraduate students with a unique opportunity to investigate nonlinear optical phenomena in the laboratory and uses equipment that is commonly available in laboratories equipped to investigate diode-laser-based absorption spectroscopy in rubidium.
Slow and stopped light systems form an important piece of the photonics puzzle by acting as memory devices. When used with few-photon light levels, these devices are fundamental to applications in quantum information science, quantum computing, and quantum communication. We report on our progress implementing a technique 1 for measuring the quantum state of light that has been stored in a warm-vapor slow-light system. This technique does not require careful mode matching can in fact be used to optimize the measured field mode without a prior knowledge of the stored light.
We measure the joint Q-function of a multi-spatial-mode field using a charge-coupled device array detector in an unbalanced heterodyne configuration. The intensity pattern formed by interference between a weak signal field and a strong local oscillator is resolved using Fourier analysis and used to reconstruct quadrature amplitude statistics for 22 spatial modes simultaneously. The local oscillator and signal propagate at an angle of 12 mrad thus shifting the classical noise to modes that do not overlap with the signal. In this configuration, balanced detection is not necessary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.