Abstract. In a secret-sharing scheme, a secret value is distributed among a set of parties by giving each party a share. The requirement is that only predefined subsets of parties can recover the secret from their shares. The family of the predefined authorized subsets is called the access structure. An access structure is ideal if there exists a secret-sharing scheme realizing it in which the shares have optimal length, that is, in which the shares are taken from the same domain as the secrets. Brickell and Davenport (J. of Cryptology, 1991) proved that ideal access structures are induced by matroids. Subsequently, ideal access structures and access structures induced by matroids have received a lot of attention. Seymour (J. of Combinatorial Theory, 1992) gave the first example of an access structure induced by a matroid, namely the Vamos matroid, that is non-ideal. Beimel and Livne (TCC 2006) presented the first non-trivial lower bounds on the size of the domain of the shares for secret-sharing schemes realizing an access structure induced by the Vamos matroid.In this work, we substantially improve those bounds by proving that the size of the domain of the shares in every secret-sharing scheme for those access structures is at least k 1.1 , where k is the size of the domain of the secrets (compared to k + Ω( √ k) in previous works). Our bounds are obtained by using non-Shannon inequalities for the entropy function. The importance of our results are: (1) we present the first proof that there exists an access structure induced by a matroid which is not nearly ideal, and (2) we present the first proof that there is an access structure whose information rate is strictly between 2/3 and 1. In addition, we present a better lower bound that applies only to linear secret-sharing schemes realizing the access structures induced by the Vamos matroid.
Much of the literature on rational cryptography focuses on analyzing the strategic properties of cryptographic protocols. However, due to the presence of computationallybounded players and the asymptotic nature of cryptographic security, a definition of sequential rationality for this setting has thus far eluded researchers.We propose a new framework for overcoming these obstacles, and provide the first definitions of computational solution concepts that guarantee sequential rationality. We argue that natural computational variants of subgame perfection are too strong for cryptographic protocols. As an alternative, we introduce a weakening called threat-free Nash equilibrium that is more permissive but still eliminates the undesirable "empty threats" of non-sequential solution concepts.To demonstrate the applicability of our framework, we revisit the problem of implementing a mediator for correlated equilibria (Dodis-Halevi-Rabin, Crypto'00), and propose a variant of their protocol that is sequentially rational for a non-trivial class of correlated equilibria. Our treatment provides a better understanding of the conditions under which mediators in a correlated equilibrium can be replaced by a stable protocol.
Abstract. Secret-sharing schemes are a tool used in many cryptographic protocols. In these schemes, a dealer holding a secret string distributes shares to the parties such that only authorized subsets of participants can reconstruct the secret from their shares. The collection of authorized sets is called an access structure. An access structure is ideal if there is a secret-sharing scheme realizing it such that the shares are taken from the same domain as the secrets. Brickell and Davenport (J. of Cryptology, 1991) have shown that ideal access structures are closely related to matroids. They give a necessary condition for an access structure to be ideal -the access structure must be induced by a matroid. Seymour (J. of Combinatorial Theory B, 1992) showed that the necessary condition is not sufficient: There exists an access structure induced by a matroid that does not have an ideal scheme.In this work we continue the research on access structures induced by matroids. Our main result in this paper is strengthening the result of Seymour. We show that in any secret sharing scheme realizing the access structure induced by the Vamos matroid with domain of the secrets of size k, the size of the domain of the shares is at least k + Ω( √ k). Our second result considers non-ideal secret sharing schemes realizing access structures induced by matroids. We prove that the fact that an access structure is induced by a matroid implies lower and upper bounds on the size of the domain of shares of subsets of participants even in nonideal schemes (this generalized results of Brickell and Davenport for ideal schemes).
Much of the literature on rational cryptography focuses on analyzing the strategic properties of cryptographic protocols. However, due to the presence of computationallybounded players and the asymptotic nature of cryptographic security, a definition of sequential rationality for this setting has thus far eluded researchers.We propose a new framework for overcoming these obstacles, and provide the first definitions of computational solution concepts that guarantee sequential rationality. We argue that natural computational variants of subgame perfection are too strong for cryptographic protocols. As an alternative, we introduce a weakening called threat-free Nash equilibrium that is more permissive but still eliminates the undesirable "empty threats" of non-sequential solution concepts.To demonstrate the applicability of our framework, we revisit the problem of implementing a mediator for correlated equilibria (Dodis-Halevi-Rabin, Crypto'00), and propose a variant of their protocol that is sequentially rational for a non-trivial class of correlated equilibria. Our treatment provides a better understanding of the conditions under which mediators in a correlated equilibrium can be replaced by a stable protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.